1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
//! mstatus register

// FIXME: in 1.12 spec there will be `SBE` and `MBE` bits.
// They allows to execute supervisor in given big endian,
// they would be in a new register `mstatush` in RV32; we should implement `mstatush`
// at that time.
// FIXME: `SXL` and `UXL` bits require a structure interpreting XLEN,
// which would be the best way we implement this using Rust?

use bit_field::BitField;
use core::mem::size_of;

/// mstatus register
#[derive(Clone, Copy, Debug)]
pub struct Mstatus {
    bits: usize,
}

/// Additional extension state
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum XS {
    /// All off
    AllOff = 0,

    /// None dirty or clean, some on
    NoneDirtyOrClean = 1,

    /// None dirty, some clean
    NoneDirtySomeClean = 2,

    /// Some dirty
    SomeDirty = 3,
}

/// Floating-point extension state
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum FS {
    Off = 0,
    Initial = 1,
    Clean = 2,
    Dirty = 3,
}

/// Machine Previous Privilege Mode
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum MPP {
    Machine = 3,
    Supervisor = 1,
    User = 0,
}

/// Supervisor Previous Privilege Mode
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SPP {
    Supervisor = 1,
    User = 0,
}

impl Mstatus {
    /// User Interrupt Enable
    #[inline]
    pub fn uie(&self) -> bool {
        self.bits.get_bit(0)
    }

    /// Supervisor Interrupt Enable
    #[inline]
    pub fn sie(&self) -> bool {
        self.bits.get_bit(1)
    }

    /// Machine Interrupt Enable
    #[inline]
    pub fn mie(&self) -> bool {
        self.bits.get_bit(3)
    }

    /// User Previous Interrupt Enable
    #[inline]
    pub fn upie(&self) -> bool {
        self.bits.get_bit(4)
    }

    /// Supervisor Previous Interrupt Enable
    #[inline]
    pub fn spie(&self) -> bool {
        self.bits.get_bit(5)
    }

    /// Machine Previous Interrupt Enable
    #[inline]
    pub fn mpie(&self) -> bool {
        self.bits.get_bit(7)
    }

    /// Supervisor Previous Privilege Mode
    #[inline]
    pub fn spp(&self) -> SPP {
        match self.bits.get_bit(8) {
            true => SPP::Supervisor,
            false => SPP::User,
        }
    }

    /// Machine Previous Privilege Mode
    #[inline]
    pub fn mpp(&self) -> MPP {
        match self.bits.get_bits(11..13) {
            0b00 => MPP::User,
            0b01 => MPP::Supervisor,
            0b11 => MPP::Machine,
            _ => unreachable!(),
        }
    }

    /// Floating-point extension state
    ///
    /// Encodes the status of the floating-point unit,
    /// including the CSR `fcsr` and floating-point data registers `f0–f31`.
    #[inline]
    pub fn fs(&self) -> FS {
        match self.bits.get_bits(13..15) {
            0b00 => FS::Off,
            0b01 => FS::Initial,
            0b10 => FS::Clean,
            0b11 => FS::Dirty,
            _ => unreachable!(),
        }
    }

    /// Additional extension state
    ///
    /// Encodes the status of additional user-mode extensions and associated state.
    #[inline]
    pub fn xs(&self) -> XS {
        match self.bits.get_bits(15..17) {
            0b00 => XS::AllOff,
            0b01 => XS::NoneDirtyOrClean,
            0b10 => XS::NoneDirtySomeClean,
            0b11 => XS::SomeDirty,
            _ => unreachable!(),
        }
    }

    /// Modify Memory PRiVilege
    #[inline]
    pub fn mprv(&self) -> bool {
        self.bits.get_bit(17)
    }

    /// Permit Supervisor User Memory access
    #[inline]
    pub fn sum(&self) -> bool {
        self.bits.get_bit(18)
    }

    /// Make eXecutable Readable
    #[inline]
    pub fn mxr(&self) -> bool {
        self.bits.get_bit(19)
    }

    /// Trap Virtual Memory
    ///
    /// If this bit is set, reads or writes to `satp` CSR or execute `sfence.vma`
    /// instruction when in S-mode will raise an illegal instruction exception.
    ///
    /// TVM is hard-wired to 0 when S-mode is not supported.
    #[inline]
    pub fn tvm(&self) -> bool {
        self.bits.get_bit(20)
    }

    /// Timeout Wait
    ///
    /// Indicates that if WFI instruction should be intercepted.
    ///
    /// If this bit is set, when WFI is executed in S-mode, and it does not complete
    /// within an implementation specific, bounded time limit, the WFI instruction will cause
    /// an illegal instruction trap; or could always cause trap then the time limit is zero.
    ///
    /// TW is hard-wired to 0 when S-mode is not supported.
    #[inline]
    pub fn tw(&self) -> bool {
        self.bits.get_bit(21)
    }

    /// Trap SRET
    ///
    /// Indicates that if SRET instruction should be trapped to raise illegal
    /// instruction exception.
    ///
    /// If S-mode is not supported, TSR bit is hard-wired to 0.
    #[inline]
    pub fn tsr(&self) -> bool {
        self.bits.get_bit(22)
    }

    /*
        FIXME: There are MBE and SBE bits in 1.12; once Privileged Specification version 1.12
        is ratified, there should be read functions of these bits as well.
    */

    /// Whether either the FS field or XS field
    /// signals the presence of some dirty state
    #[inline]
    pub fn sd(&self) -> bool {
        self.bits.get_bit(size_of::<usize>() * 8 - 1)
    }
}

read_csr_as!(Mstatus, 0x300, __read_mstatus);
write_csr!(0x300, __write_mstatus);
set!(0x300, __set_mstatus);
clear!(0x300, __clear_mstatus);

set_clear_csr!(
    /// User Interrupt Enable
    , set_uie, clear_uie, 1 << 0);
set_clear_csr!(
    /// Supervisor Interrupt Enable
    , set_sie, clear_sie, 1 << 1);
set_clear_csr!(
    /// Machine Interrupt Enable
    , set_mie, clear_mie, 1 << 3);
set_csr!(
    /// User Previous Interrupt Enable
    , set_upie, 1 << 4);
set_csr!(
    /// Supervisor Previous Interrupt Enable
    , set_spie, 1 << 5);
set_csr!(
    /// Machine Previous Interrupt Enable
    , set_mpie, 1 << 7);
set_clear_csr!(
    /// Modify Memory PRiVilege
    , set_mprv, clear_mprv, 1 << 17);
set_clear_csr!(
    /// Permit Supervisor User Memory access
    , set_sum, clear_sum, 1 << 18);
set_clear_csr!(
    /// Make eXecutable Readable
    , set_mxr, clear_mxr, 1 << 19);
set_clear_csr!(
    /// Trap Virtual Memory
    , set_tvm, clear_tvm, 1 << 20);
set_clear_csr!(
    /// Timeout Wait
    , set_tw, clear_tw, 1 << 21);
set_clear_csr!(
    /// Trap SRET
    , set_tsr, clear_tsr, 1 << 22);

/// Supervisor Previous Privilege Mode
#[inline]
pub unsafe fn set_spp(spp: SPP) {
    match spp {
        SPP::Supervisor => _set(1 << 8),
        SPP::User => _clear(1 << 8),
    }
}

/// Machine Previous Privilege Mode
#[inline]
pub unsafe fn set_mpp(mpp: MPP) {
    let mut value = _read();
    value.set_bits(11..13, mpp as usize);
    _write(value);
}

/// Floating-point extension state
#[inline]
pub unsafe fn set_fs(fs: FS) {
    let mut value = _read();
    value.set_bits(13..15, fs as usize);
    _write(value);
}