1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// This module is only intended to be used internally, hence the semver
// exemption. It probably should be in a HAL or board crate.
#![cfg(feature = "semver-exempt")]
use rp2040_pac::USBCTRL_REGS;
use usb_device::{
    endpoint::{EndpointAddress, EndpointType},
    UsbDirection,
};
use vcell::VolatileCell;

const DPRAM_LEN: usize = 0x1_0000;
const DPRAM_EP0_BUFFER_OFFSET: usize = 0x100;

const EP_CTRL_ENABLE: u32 = 1 << 31;
const EP_CTRL_INTERRUPT_PER_BUFFER: u32 = 1 << 29;
const EP_CTRL_TYPE_LSB: u32 = 26;
const EP_BUF_CTRL_AVAIL: u32 = 1 << 10;
const EP_BUF_CTRL_STALL: u32 = 1 << 11;
const EP_BUF_CTRL_PID_DATA1: u32 = 1 << 13;
const EP_BUF_CTRL_FULL: u32 = 1 << 15;
const EP_BUF_CTRL_LEN_MASK: u32 = 0x3ff;

pub struct UsbBus {
    usbctrl_regs: USBCTRL_REGS,
    ep_allocation: [u16; 2],
    ep_buffer_offset: [u16; 32],
    ep_max_packet_size: [u16; 16],
    ep_in_ready: VolatileCell<u16>,
    next_data_buffer_offset: usize,
}

unsafe impl Sync for UsbBus {}

#[inline]
fn address_to_index(addr: EndpointAddress) -> usize {
    u8::from(addr).rotate_left(1) as usize ^ 1
}

impl UsbBus {
    pub fn new(usbctrl_regs: USBCTRL_REGS) -> Self {
        Self {
            usbctrl_regs,
            ep_allocation: [0b0000_0000_0000_0001; 2],
            ep_buffer_offset: {
                let mut b = [0; 32];
                b[0] = DPRAM_EP0_BUFFER_OFFSET as _;
                b[1] = DPRAM_EP0_BUFFER_OFFSET as _;
                b
            },
            ep_max_packet_size: [0; 16],
            ep_in_ready: VolatileCell::new(0xffff),
            next_data_buffer_offset: 0x180,
        }
    }

    #[inline]
    fn usbctrl_dpram_u32(&self) -> &[VolatileCell<u32>; DPRAM_LEN / 4] {
        // We have `usbctrl_regs`, so it's probably safe to assume we have
        // access to the DPRAM, too
        unsafe { &*(0x5010_0000 as *const _) }
    }

    #[inline]
    fn usbctrl_dpram_u8(&self) -> &[VolatileCell<u8>; DPRAM_LEN] {
        // We have `usbctrl_regs`, so it's probably safe to assume we have
        // access to the DPRAM, too
        unsafe { &*(0x5010_0000 as *const _) }
    }

    #[inline]
    fn ep_ctrl(&self, addr: EndpointAddress) -> &VolatileCell<u32> {
        debug_assert!(addr.index() < 16);
        &self.usbctrl_dpram_u32()[address_to_index(addr)]
    }

    #[inline]
    fn ep_buf_ctrl(&self, addr: EndpointAddress) -> &VolatileCell<u32> {
        debug_assert!(addr.index() < 16);
        &self.usbctrl_dpram_u32()[address_to_index(addr) + 32]
    }
}

impl usb_device::bus::UsbBus for UsbBus {
    fn alloc_ep(
        &mut self,
        ep_dir: UsbDirection,
        ep_addr: Option<EndpointAddress>,
        ep_type: EndpointType,
        max_packet_size: u16,
        _interval: u8,
    ) -> usb_device::Result<EndpointAddress> {
        match ep_addr {
            Some(ep) if ep.index() == 0 => {
                self.ep_buf_ctrl(ep).set(0);

                if ep_dir == UsbDirection::Out {
                    self.ep_max_packet_size[0] = max_packet_size;
                }

                // EP0 is treated specially by the hardware
                return Ok(ep);
            }
            _ => {}
        }

        assert_eq!(UsbDirection::Out as usize >> 7, 0);
        assert_eq!(UsbDirection::In as usize >> 7, 1);
        let ep_dir_bit = (ep_dir as usize) >> 7;

        let requested_allocation_i = if let Some(ep_addr) = ep_addr {
            debug_assert_eq!(ep_dir, ep_addr.direction());
            if ep_addr.index() < 16 {
                ep_addr.index() as u32
            } else {
                // index is out of range; ignore it
                0
            }
        } else {
            0
        };

        // Find a free endpoint.
        let ep_index = (self.ep_allocation[ep_dir_bit].rotate_right(requested_allocation_i) as u32)
            .trailing_ones();
        if ep_index == 32 {
            return Err(usb_device::UsbError::EndpointOverflow);
        }
        let ep_index = (requested_allocation_i + ep_index) % 16;

        // The endpoint address
        let ep = EndpointAddress::from_parts(ep_index as usize, ep_dir);

        // Allocate the buffer
        let buffer_offset = self.next_data_buffer_offset;
        let buffer_offset_end =
            (self.next_data_buffer_offset + max_packet_size as usize + 63) & !63;
        if buffer_offset_end > DPRAM_LEN {
            return Err(usb_device::UsbError::EndpointMemoryOverflow);
        }

        // Commit the change
        self.ep_ctrl(ep).set(
            EP_CTRL_ENABLE
                | EP_CTRL_INTERRUPT_PER_BUFFER
                | ((ep_type as u32) << EP_CTRL_TYPE_LSB)
                | (buffer_offset as u32),
        );

        if ep_dir == UsbDirection::Out {
            // Get ready to receive
            self.ep_buf_ctrl(ep)
                .set(EP_BUF_CTRL_AVAIL | max_packet_size as u32);
            self.ep_max_packet_size[ep.index()] = max_packet_size;
        } else {
            self.ep_buf_ctrl(ep).set(EP_BUF_CTRL_PID_DATA1);
        }

        self.ep_buffer_offset[address_to_index(ep)] = buffer_offset as _;

        self.next_data_buffer_offset = buffer_offset_end;
        self.ep_allocation[ep_dir_bit] |= 1 << ep_index;

        Ok(ep)
    }

    fn enable(&mut self) {
        // Mux the controller to the onboard usb phy
        self.usbctrl_regs
            .usb_muxing
            .write(|bits| bits.to_phy().set_bit().softcon().set_bit());

        // Force VBUS detect so the device thinks it is plugged into a host
        self.usbctrl_regs.usb_pwr.write(|bits| {
            bits.vbus_detect()
                .set_bit()
                .vbus_detect_override_en()
                .set_bit()
        });

        // Choose Device mode, enable the controller
        self.usbctrl_regs
            .main_ctrl
            .write(|bits| bits.host_ndevice().clear_bit().controller_en().set_bit());

        // Set bit in BUFF_STATUS for every buffer completed RW 0x0 on EP0
        self.usbctrl_regs
            .sie_ctrl
            .write(|bits| bits.ep0_int_1buf().set_bit());

        // Interrupt enable
        self.usbctrl_regs.inte.write(|bits| {
            bits.buff_status()
                .set_bit()
                .bus_reset()
                .set_bit()
                .setup_req()
                .set_bit()
        });

        // Indicate device connection by enabling pull-up resistors on D+/D-
        // TODO: use bus RMW ops
        self.usbctrl_regs
            .sie_ctrl
            .modify(|_, w| w.pullup_en().set_bit());
    }

    fn reset(&self) {
        self.ep_buf_ctrl(EndpointAddress::from_parts(0, UsbDirection::In))
            .set(0);

        // TODO: putting the correct value causes a protocol error. Why?
        self.ep_buf_ctrl(EndpointAddress::from_parts(0, UsbDirection::Out))
            .set(0);

        self.ep_in_ready.set(0xffff);

        for i in 1..16 {
            if (self.ep_allocation[0] & (1 << i)) != 0 {
                let ep = EndpointAddress::from_parts(i, UsbDirection::Out);
                let max_packet_size = self.ep_max_packet_size[i];
                self.ep_buf_ctrl(ep)
                    .set(EP_BUF_CTRL_AVAIL | max_packet_size as u32);
            }

            if (self.ep_allocation[1] & (1 << i)) != 0 {
                let ep = EndpointAddress::from_parts(i, UsbDirection::In);
                self.ep_buf_ctrl(ep).set(EP_BUF_CTRL_PID_DATA1);
            }
        }
    }

    #[inline]
    fn set_device_address(&self, addr: u8) {
        self.usbctrl_regs
            .addr_endp
            .write(|b| unsafe { b.address().bits(addr) });
    }

    fn write(&self, ep_addr: EndpointAddress, buf: &[u8]) -> usb_device::Result<usize> {
        debug_assert!(ep_addr.direction() == UsbDirection::In);

        let ep_i = address_to_index(ep_addr);
        let buf_ctrl = self.ep_buf_ctrl(ep_addr);

        if (self.ep_in_ready.get() & (1 << ep_addr.index())) == 0 {
            return Err(usb_device::UsbError::WouldBlock);
        }

        if ep_i == 0 {
            // When writing to EP0 IN, reset EP0 OUT's state. We could be too
            // late if we tried to do this when a SETUP packet is received.
            self.ep_buf_ctrl(EndpointAddress::from_parts(0, UsbDirection::Out))
                .set(
                    EP_BUF_CTRL_PID_DATA1 | EP_BUF_CTRL_AVAIL | (self.ep_max_packet_size[0] as u32),
                );
        }

        let hw_buf = &self.usbctrl_dpram_u8()[self.ep_buffer_offset[ep_i] as _..];
        for (x, y) in hw_buf.iter().zip(buf.iter()) {
            x.set(*y);
        }

        // Set `buf_ctrl`, toggle PID
        buf_ctrl.set(
            buf_ctrl.get() & !EP_BUF_CTRL_AVAIL & !EP_BUF_CTRL_LEN_MASK ^ EP_BUF_CTRL_PID_DATA1
                | buf.len() as u32
                | EP_BUF_CTRL_FULL,
        );

        // 12 cycle delay
        #[cfg(target_arch = "arm")]
        unsafe {
            core::arch::asm!(
                "b 1f
                    1: b 1f
                    1: b 1f
                    1: b 1f
                    1: b 1f
                    1: b 1f
                    1:\n"
            );
        }

        buf_ctrl.set(buf_ctrl.get() | EP_BUF_CTRL_AVAIL);

        self.ep_in_ready
            .set(self.ep_in_ready.get() & !(1u16 << ep_addr.index()));

        Ok(buf.len())
    }

    fn read(&self, ep_addr: EndpointAddress, buf: &mut [u8]) -> usb_device::Result<usize> {
        debug_assert!(ep_addr.direction() == UsbDirection::Out);

        let ep_i = address_to_index(ep_addr);
        if ep_i == 1 && self.usbctrl_regs.ints.read().setup_req().bit() {
            // The setup packet for EP0 gets written to the first eight bytes
            // of the DPRAM
            let words = [
                self.usbctrl_dpram_u32()[0].get(),
                self.usbctrl_dpram_u32()[1].get(),
            ];

            let buf = buf
                .get_mut(..8)
                .ok_or(usb_device::UsbError::BufferOverflow)?;
            buf[0..4].copy_from_slice(&words[0].to_ne_bytes());
            buf[4..8].copy_from_slice(&words[1].to_ne_bytes());

            // Clear the setup request status
            self.usbctrl_regs
                .sie_status
                .write(|b| b.setup_rec().set_bit());

            return Ok(8);
        }

        if self.usbctrl_regs.buff_status.read().bits() & (1 << ep_i) == 0 {
            return Err(usb_device::UsbError::WouldBlock);
        }

        let buf_ctrl = self.ep_buf_ctrl(ep_addr);

        // Copy from the hardware buffer
        let len = (buf_ctrl.get() & EP_BUF_CTRL_LEN_MASK) as usize;
        let buf = buf
            .get_mut(..len)
            .ok_or(usb_device::UsbError::BufferOverflow)?;

        // TODO: Optimize buffer copy
        let hw_buf = &self.usbctrl_dpram_u8()[self.ep_buffer_offset[ep_i] as _..];
        for (x, y) in hw_buf.iter().zip(buf.iter_mut()) {
            *y = x.get();
        }

        // Flip the expected PID, mark the buffer as empty
        buf_ctrl.set(
            buf_ctrl.get() & !EP_BUF_CTRL_FULL & !EP_BUF_CTRL_LEN_MASK ^ EP_BUF_CTRL_PID_DATA1
                | EP_BUF_CTRL_AVAIL
                | (self.ep_max_packet_size[ep_addr.index()] as u32),
        );

        // Clear the status bit (writing one clears it)
        self.usbctrl_regs
            .buff_status
            .write(|w| unsafe { w.bits(1 << ep_i) });

        Ok(buf.len())
    }

    #[inline]
    fn set_stalled(&self, ep_addr: EndpointAddress, stalled: bool) {
        let buf_ctrl = self.ep_buf_ctrl(ep_addr);
        if stalled {
            buf_ctrl.set(buf_ctrl.get() | EP_BUF_CTRL_STALL);
        } else {
            buf_ctrl.set(buf_ctrl.get() & !EP_BUF_CTRL_STALL);
        }

        if ep_addr.index() == 0 {
            self.usbctrl_regs
                .ep_stall_arm
                .modify(|_, w| match (ep_addr.direction(), stalled) {
                    (UsbDirection::In, false) => w.ep0_in().clear_bit(),
                    (UsbDirection::In, true) => w.ep0_in().set_bit(),
                    (UsbDirection::Out, false) => w.ep0_out().clear_bit(),
                    (UsbDirection::Out, true) => w.ep0_out().set_bit(),
                });
        }
    }

    #[inline]
    fn is_stalled(&self, ep_addr: EndpointAddress) -> bool {
        (self.ep_buf_ctrl(ep_addr).get() & EP_BUF_CTRL_STALL) != 0
    }

    fn suspend(&self) {}

    fn resume(&self) {
        // TODO: Remote resume
    }

    #[inline]
    fn poll(&self) -> usb_device::bus::PollResult {
        let status = self.usbctrl_regs.ints.read();

        if status.bus_reset().bit() {
            // Clear the device address
            self.usbctrl_regs
                .addr_endp
                .write(|b| unsafe { b.address().bits(0) });

            // Clear the bus reset status
            self.usbctrl_regs
                .sie_status
                .write(|b| b.bus_reset().set_bit());

            return usb_device::bus::PollResult::Reset;
        }

        let mut ep_out = 0u16;
        let mut ep_in_complete = 0u16;
        let mut ep_setup = 0u16;

        if status.setup_req().bit() {
            ep_setup |= 1;

            // The first DATA packet to receive by EP0 OUT must be DATA1.
            // However, we can't modify `ep_buf_ctrl((0, Out))` at this point
            // because it may already have a valid PID (DATA0/DATA1) and the
            // hardware may already be receiving the first packet. Therefore,
            // we do this when writing to EP0 In.

            // The first DATA packet to send to EP0 IN must be DATA1
            self.ep_buf_ctrl(EndpointAddress::from_parts(0, UsbDirection::In))
                .set(0 /* clear `EP_BUF_CTRL_PID_DATA1` */);
        }

        if status.buff_status().bit() {
            let buf_status = self.usbctrl_regs.buff_status.read().bits();

            // IN EP (i / 2), i = 0, 2, 4, ..., 30
            {
                let mut buf_status = buf_status;
                let mut b2 = 1; // 1 << (i / 2)
                loop {
                    if buf_status == 0 {
                        break;
                    }

                    if (buf_status & 1) != 0 {
                        // ep_in_complete |= 1 << (i / 2)
                        ep_in_complete |= b2;
                    }

                    // i += 2;
                    buf_status >>= 2;
                    b2 <<= 1;
                }
                self.ep_in_ready
                    .set(self.ep_in_ready.get() | ep_in_complete);
            }

            // OUT EP ((i - 1) / 2), i = 1, 3, 5, ..., 31
            {
                let mut buf_status = buf_status >> 1;
                let mut b2 = 1; // 1 << ((i - 1) / 2)
                loop {
                    if buf_status == 0 {
                        break;
                    }

                    if (buf_status & 1) != 0 {
                        // ep_out |= 1 << ((i - 1) / 2)
                        ep_out |= b2;
                    }

                    // i += 2;
                    buf_status >>= 2;
                    b2 <<= 1;
                }
            }

            // Clear the status bits for IN endpoints (writing ones clears them)
            self.usbctrl_regs
                .buff_status
                .write(|w| unsafe { w.bits(buf_status & 0x55555555) });
        }

        // It's harmless to return `Data` when there are no events in the
        // current implementatino of `usb_device`.
        usb_device::bus::PollResult::Data {
            ep_out,
            ep_in_complete,
            ep_setup,
        }
    }

    const QUIRK_SET_ADDRESS_BEFORE_STATUS: bool = false;

    fn force_reset(&self) -> usb_device::Result<()> {
        // Indicate device disconnection by disabling pull-up resistors on D+/D-
        // TODO: use bus RMW ops
        self.usbctrl_regs
            .sie_ctrl
            .modify(|_, w| w.pullup_en().clear_bit());

        // And re-enable them
        self.usbctrl_regs
            .sie_ctrl
            .modify(|_, w| w.pullup_en().set_bit());

        Ok(())
    }
}