1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
//! Standard output
//!
//! Warning: It can block the calling thread by polling. It will use
//! [`cortex_m::interrupt:free`] to enter a critical section, which can be cut
//! short if the destination gets stuck.
// This module is only intended to be used internally, hence the semver
// exemption. It probably should be in a HAL crate.
#![cfg(feature = "semver-exempt")]
use core::{cell::RefCell, convert::Infallible, fmt};
use cortex_m::interrupt;
use inline_dyn::{inline_dyn, InlineDyn};
use nb::block;

pub fn set_stdout(writer: impl SerialWrite) {
    interrupt::free(|cs| {
        *STDOUT.borrow(cs).borrow_mut() = Some(inline_dyn![SerialWrite; writer]);
    });
}

pub trait SerialWrite:
    embedded_hal::serial::Write<u8, Error = Infallible> + Send + Sync + 'static
{
}
impl<T> SerialWrite for T where
    T: embedded_hal::serial::Write<u8, Error = Infallible> + Send + Sync + 'static
{
}

type InlineDynWrite = InlineDyn<dyn SerialWrite>;

static STDOUT: interrupt::Mutex<RefCell<Option<InlineDynWrite>>> =
    interrupt::Mutex::new(RefCell::new(None));

struct WrapSerialWrite;

impl WrapSerialWrite {
    fn write_bytes_inner(mut s: &[u8]) -> core::fmt::Result {
        loop {
            if s.is_empty() {
                break Ok(());
            }

            block!(interrupt::free(|cs| -> nb::Result<(), core::fmt::Error> {
                let mut stdout = STDOUT.borrow(cs).borrow_mut();
                let Some(stdout) = &mut *stdout else { return Ok(()) };

                loop {
                    match s {
                        [] => {
                            break Ok(());
                        }
                        [head, tail @ ..] => {
                            // Output the first byte. If this gets stuck,
                            // break out of `interrupt::free`.
                            stdout
                                .write(*head)
                                .map_err(|e| e.map(|_| core::fmt::Error))?;
                            s = tail;
                        }
                    }
                }
            }))?;
        }
    }

    fn write_bytes(mut s: &[u8]) -> core::fmt::Result {
        while let Some(i) = s.iter().position(|&x| x == b'\n') {
            if i > 0 {
                Self::write_bytes_inner(&s[0..i])?;
            }

            Self::write_bytes_inner(b"\r\n")?;

            s = &s[i + 1..];
        }
        if s.len() > 0 {
            Self::write_bytes_inner(s)?;
        }
        Ok(())
    }
}

impl core::fmt::Write for WrapSerialWrite {
    fn write_str(&mut self, s: &str) -> core::fmt::Result {
        Self::write_bytes(s.as_bytes())
    }
}

pub fn write_bytes(s: &[u8]) {
    let _ = WrapSerialWrite::write_bytes(s);
}

#[doc(hidden)]
pub fn write_str(s: &str) {
    let _ = fmt::Write::write_str(&mut WrapSerialWrite, s);
}

#[doc(hidden)]
pub fn write_fmt(args: fmt::Arguments<'_>) {
    let _ = fmt::Write::write_fmt(&mut WrapSerialWrite, args);
}

/// Macro for printing to the serial standard output
#[macro_export]
macro_rules! sprint {
    ($($tt:tt)*) => {
        match ::core::format_args!($($tt)*) {
            args => if let ::core::option::Option::Some(s) = args.as_str() {
                $crate::stdout::write_str(s)
            } else {
                $crate::stdout::write_fmt(args)
            },
        }
    };
}

/// Macro for printing to the serial standard output, with a newline.
#[macro_export]
macro_rules! sprintln {
    ($($tt:tt)*) => {{
        $crate::sprint!($($tt)*);
        $crate::stdout::write_str("\n");
    }};
}