1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
//! Implements the core algorithm for tickless timing.
use core::{cmp::min, fmt};
use num_rational::Ratio;

use crate::{
    num::{
        ceil_div128, floor_ratio128, gcd128, reduce_ratio128,
        wrapping::{Wrapping, WrappingTrait},
    },
    utils::Init,
};

/// The parameters of the tickless timing algorithm.
///
/// It can be passed to [`TicklessCfg::new`] to construct [`TicklessCfg`].
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct TicklessOptions {
    /// The numerator of the hardware timer frequency.
    pub hw_freq_num: u64,
    /// The denominator of the hardware timer frequency.
    pub hw_freq_denom: u64,
    /// The headroom for interrupt latency, measured in hardware timer cycles.
    pub hw_headroom_ticks: u32,
    /// Forces [`hw_max_tick_count`] to be `u32::MAX`. This might require the
    /// use of a less-efficient algorithm.
    ///
    /// [`hw_max_tick_count`]: TicklessCfg::hw_max_tick_count
    pub force_full_hw_period: bool,
    /// Allow the use of [`TicklessStateTrait::reset`].
    pub resettable: bool,
}

/// Error type for [`TicklessCfg::new`].
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum CfgError {
    /// The numerator of the clock frequency is zero.
    FreqNumZero,
    /// The denominator of the clock frequency is zero.
    FreqDenomZero,
    /// The clock frequency is too high.
    FreqTooHigh,
    /// Intermediate calculation overflowed. the clock frequency might be too
    /// complex or too low.
    InternalOverflow,
    /// The calculated value of [`TicklessCfg::max_timeout`] is too low.
    OSMaxTimeoutTooLow,
}

impl CfgError {
    pub const fn as_str(self) -> &'static str {
        match self {
            Self::FreqNumZero => "the numerator of the clock frequency must not be zero",
            Self::FreqDenomZero => "the denominator of the clock frequency must not be zero",
            Self::FreqTooHigh => "the timer frequency is too fast",
            Self::InternalOverflow => {
                "intermediate calculation overflowed. the clock frequency might \
                 be too complex or too low"
            }
            Self::OSMaxTimeoutTooLow => {
                "the calculated maximum OS timeout is too low. lowering the \
                 interrupt latency headroom might help"
            }
        }
    }

    pub const fn panic(self) -> ! {
        core::panicking::panic(self.as_str());
    }
}

impl fmt::Display for CfgError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(self.as_str())
    }
}

/// The precomputed parameters for the tickless implementation of
/// [`r3_kernel::PortTimer`].
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct TicklessCfg {
    /// The integral part of the number of hardware ticks per microseconds.
    hw_ticks_per_micro: u32,
    /// The fractional part of the number of hardware ticks per microseconds,
    /// divided by [`Self::division`].
    hw_subticks_per_micro: u64,
    /// The algorithm to use.
    algorithm: TicklessAlgorithm,
    /// The denominator of [`Self::hw_subticks_per_micro`].
    division: u64,
    /// The maximum interval (measured in microseconds) that can be reliably
    /// measured.
    max_timeout: u32,
}

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum TicklessAlgorithm {
    /// See [`TicklessStatelessCore`].
    Stateless {
        /// Get the maximum hardware tick count (period minus one cycle).
        hw_max_tick_count: u32,
        /// Get the maximum OS tick count (period minus one cycle).
        max_tick_count: u32,
    },
    /// See [`TicklessStateCore`].
    Stateful,
}

impl TicklessCfg {
    /// Construct a `TicklessCfg`.
    #[allow(clippy::int_plus_one)] // for consistency
    pub const fn new(
        TicklessOptions {
            hw_freq_num,
            hw_freq_denom,
            hw_headroom_ticks,
            force_full_hw_period,
            resettable,
        }: TicklessOptions,
    ) -> Result<Self, CfgError> {
        if hw_freq_denom == 0 {
            return Err(CfgError::FreqDenomZero);
        } else if hw_freq_num == 0 {
            return Err(CfgError::FreqNumZero);
        }

        // `hw_ticks_per_micro = freq_num / freq_denom / 1_000_000`
        let hw_ticks_per_micro =
            Ratio::new_raw(hw_freq_num as u128, hw_freq_denom as u128 * 1_000_000);
        let hw_ticks_per_micro = reduce_ratio128(hw_ticks_per_micro);
        assert!(*hw_ticks_per_micro.numer() >= 1);
        assert!(*hw_ticks_per_micro.numer() <= 0xffff_ffff_ffff_ffff);
        assert!(*hw_ticks_per_micro.denom() >= 1);
        assert!(*hw_ticks_per_micro.denom() <= 0xf_423f_ffff_ffff_fff0_bdc0);

        // Split `hw_ticks_per_micro` into integral and fractional parts.
        let hw_ticks_per_micro_floor = floor_ratio128(hw_ticks_per_micro);
        let hw_subticks_per_micro = *hw_ticks_per_micro.numer() % *hw_ticks_per_micro.denom();
        assert!(hw_ticks_per_micro_floor <= 0xffff_ffff_ffff_ffff);
        assert!(hw_subticks_per_micro <= *hw_ticks_per_micro.denom() - 1);

        if hw_ticks_per_micro_floor > u32::MAX as u128 {
            return Err(CfgError::FreqTooHigh);
        }

        if *hw_ticks_per_micro.denom() > u64::MAX as u128 {
            return Err(CfgError::InternalOverflow);
        }

        // Try the stateless algorithm first. Find the period at which HW ticks
        // and OS ticks align. The result is `hw_global_period` HW ticks ==
        // `global_period` microseconds.
        let (hw_global_period, global_period) = if hw_subticks_per_micro == 0 {
            assert!(*hw_ticks_per_micro.denom() == 1);
            assert!(hw_ticks_per_micro_floor != 0);
            (hw_ticks_per_micro_floor, 1)
        } else {
            // (1..).map(|i| (i, hw_subticks_per_micro * i))
            //      .filter(|(i, subticks)| subticks % hw_ticks_per_micro.denom() == 0)
            //      .nth(0)
            //      .0
            //  = lcm(hw_subticks_per_micro, hw_ticks_per_micro.denom())
            //     / hw_subticks_per_micro
            //  = hw_ticks_per_micro.denom()
            //     / gcd(hw_subticks_per_micro, hw_ticks_per_micro.denom())
            let global_period = *hw_ticks_per_micro.denom()
                / gcd128(hw_subticks_per_micro, *hw_ticks_per_micro.denom());

            // global_period * hw_ticks_per_micro
            //  = hw_ticks_per_micro.numer()
            //     / gcd(hw_subticks_per_micro, hw_ticks_per_micro.denom())
            let hw_global_period = *hw_ticks_per_micro.numer()
                / gcd128(hw_subticks_per_micro, *hw_ticks_per_micro.denom());

            (hw_global_period, global_period)
        };
        assert!(hw_global_period >= 1);
        assert!(hw_global_period <= *hw_ticks_per_micro.numer());
        assert!(global_period >= 1);
        assert!(global_period <= *hw_ticks_per_micro.denom());

        let (algorithm, max_timeout) = if hw_global_period <= 0x1_0000_0000
            && global_period <= 0x1_0000_0000
            // Prevent `[hw_]max_tick_count` from being zero
            && (hw_global_period <= 0x8000_0000 || global_period > 1)
            && (global_period <= 0x8000_0000 || hw_global_period > 1)
            && (!force_full_hw_period ||
                (0x1_0000_0000 % hw_global_period == 0
                 && hw_global_period >= global_period))
            && !resettable
        {
            // If the period is measurable without wrap-around in both ticks,
            // the stateless algorithm is applicable.
            let repeat = min(
                0x1_0000_0000 / hw_global_period,
                0x1_0000_0000 / global_period,
            );
            let hw_max_tick_count = hw_global_period * repeat - 1;
            let max_tick_count = global_period * repeat - 1;

            if force_full_hw_period {
                assert!(hw_max_tick_count == u32::MAX as u128);
            }

            // Find the maximum value of `max_timeout` such that:
            //
            //  // For every possible reference point...
            //  ∀ref_hw_tick_count ∈ 0..=hw_max_tick_count:
            //    let ref_tick_count = floor(ref_hw_tick_count / hw_ticks_per_micro);
            //
            //    // Timeout is set to maximum
            //    let next_tick_count = ref_tick_count + max_timeout;
            //    let next_hw_tick_count = ceil(next_tick_count * hw_ticks_per_micro);
            //
            //    // Take an interrupt latency into account
            //    let late_hw_tick_count = next_hw_tick_count + hw_headroom_ticks;
            //
            //    // Convert it back to OS tick count
            //    let late_tick_count = floor(late_hw_tick_count / hw_ticks_per_micro);
            //
            //    // The tick count of the next tick shouldn't completely
            //    // "revolve" around
            //    late_tick_count <= ref_tick_count + max_tick_count
            //
            let max_timeout = (
                // `late_tick_count <= ref_tick_count + max_tick_count`
                (max_tick_count * *hw_ticks_per_micro.numer() + *hw_ticks_per_micro.numer() - 1)
                    .saturating_sub(
                        *hw_ticks_per_micro.denom() - 1
                            + hw_headroom_ticks as u128 * *hw_ticks_per_micro.denom(),
                    )
            ) / *hw_ticks_per_micro.numer();

            if max_timeout == 0 {
                return Err(CfgError::OSMaxTimeoutTooLow);
            }
            assert!(max_timeout <= u32::MAX as u128);

            (
                TicklessAlgorithm::Stateless {
                    hw_max_tick_count: hw_max_tick_count as u32,
                    max_tick_count: max_tick_count as u32,
                },
                max_timeout as u32,
            )
        } else {
            let hw_max_tick_count = u32::MAX;
            let max_tick_count = u32::MAX;
            // Find the maximum value of `max_timeout` such that:
            //
            //  // For every possible reference point...
            //  ∀ref_tick_count ∈ 0..=max_tick_count
            //  ∀ref_hw_tick_count ∈ 0..=hw_max_tick_count
            //  ∀ref_hw_subtick_count ∈ 0..hw_ticks_per_micro.denom():
            //    // Timeout is set to maximum
            //    let next_hw_tick_count = ceil(
            //      ref_hw_tick_count + ref_hw_subtick_count / hw_ticks_per_micro.denom() +
            //        max_timeout * hw_ticks_per_micro
            //    );
            //
            //    // Take an interrupt latency into account
            //    let late_hw_tick_count = next_hw_tick_count + hw_headroom_ticks;
            //
            //    // Convert it back to OS tick count
            //    let elapsed_hw_ticks = late_hw_tick_count -
            //       (ref_hw_tick_count + ref_hw_subtick_count / hw_ticks_per_micro.denom());
            //    let elapsed_ticks = elapsed_hw_ticks / hw_ticks_per_micro;
            //    let late_tick_count = ref_tick_count + floor(elapsed_ticks);
            //
            //    (
            //      // The hardware tick count of the next tick shouldn't completely
            //      // "revolve" around
            //      late_hw_tick_count <= ref_hw_tick_count + hw_max_tick_count &&
            //
            //      // The OS tick count of the next tick shouldn't completely
            //      // "revolve" around
            //      late_tick_count <= ref_tick_count + max_tick_count
            //    )
            //
            let max_timeout = min(
                // `late_hw_tick_count <= ref_hw_tick_count + hw_max_tick_count`
                ((hw_max_tick_count - hw_headroom_ticks) as u128 * *hw_ticks_per_micro.denom())
                    .saturating_sub(*hw_ticks_per_micro.denom() - 1),
                // `late_tick_count <= ref_tick_count + max_tick_count`
                (max_tick_count as u128 * *hw_ticks_per_micro.numer()
                    + *hw_ticks_per_micro.numer()
                    - 1)
                .saturating_sub(
                    *hw_ticks_per_micro.denom() - 1
                        + hw_headroom_ticks as u128 * *hw_ticks_per_micro.denom(),
                ),
            ) / *hw_ticks_per_micro.numer();

            if max_timeout == 0 {
                return Err(CfgError::OSMaxTimeoutTooLow);
            }
            assert!(max_timeout <= u32::MAX as u128);

            (TicklessAlgorithm::Stateful, max_timeout as u32)
        };

        Ok(Self {
            hw_ticks_per_micro: hw_ticks_per_micro_floor as u32,
            hw_subticks_per_micro: hw_subticks_per_micro as u64,
            algorithm,
            division: *hw_ticks_per_micro.denom() as u64,
            max_timeout,
        })
    }

    /// Get the maximum hardware tick count (period minus one cycle).
    #[inline]
    pub const fn hw_max_tick_count(&self) -> u32 {
        match self.algorithm {
            TicklessAlgorithm::Stateless {
                hw_max_tick_count, ..
            } => hw_max_tick_count,
            TicklessAlgorithm::Stateful => u32::MAX,
        }
    }

    /// Get the maximum OS tick count (period minus one cycle).
    #[inline]
    pub const fn max_tick_count(&self) -> u32 {
        match self.algorithm {
            TicklessAlgorithm::Stateless { max_tick_count, .. } => max_tick_count,
            TicklessAlgorithm::Stateful => u32::MAX,
        }
    }

    /// Get the maximum time interval that can be reliably measured, taking an
    /// interrupt latency into account.
    #[inline]
    pub const fn max_timeout(&self) -> u32 {
        self.max_timeout
    }

    /// Get the subtick division.
    #[inline]
    pub const fn division(&self) -> u64 {
        self.division
    }

    /// Work-around for the current limitation of `generic_const_exprs`
    /// (Dereferncing is not supported in generic constants, such as const
    /// generic parameters)
    #[doc(hidden)]
    pub const fn take_division(self) -> u64 {
        self.division()
    }
}

/// Instantiates the optimal version of [`TicklessStateCore`] using a
/// given [`TicklessCfg`]. All instances implement [`TicklessStateTrait`].
pub type TicklessState<const CFG: TicklessCfg> = If! {
    |CFG: TicklessCfg|
    if (matches!(CFG.algorithm, TicklessAlgorithm::Stateful)) {
        TicklessStateCore<Wrapping<{ CFG.take_division() - 1 }>>
    } else {
        TicklessStatelessCore
    }
};

/// The stateless and tickless implementation of
/// [`r3_kernel::PortTimer`].
///
/// The stateless algorithm is chosen if the hardware ticks and OS ticks “line
/// up” periodically with a period shorter than the representable ranges of both
/// tick counts.
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
///  HW ticks    ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
///  ³/₇μs/tick  0                    7                    14                   21
///              .                    .                    .           (hw_max_tick_count + 1)
///              |                    |                    |                    .
///              |                    |                    |                    |
///              '                    '                    '                    '
///  OS ticks    ┌──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┐
///  1μs/tick    0                    3                    6                    9
///                                                                     (max_tick_count + 1)
/// ```
)]
///
/// </center>
///
#[doc = include_str!("./common.md")]
#[derive(Debug, Copy, Clone)]
pub struct TicklessStatelessCore;

/// The internal state of the tickless implementation of
/// [`r3_kernel::PortTimer`].
#[derive(Debug, Copy, Clone)]
pub struct TicklessStateCore<Subticks> {
    /// The OS tick count at the reference point.
    ref_tick_count: u32,
    /// The hardware tick count at the reference point.
    ref_hw_tick_count: u32,
    /// The fractional part of the hardware tick count at the reference point.
    /// Must be in range `0..cfg.division` for a given `cfg: `[`TicklessCfg`].
    ref_hw_subtick_count: Subticks,
}

/// Operations implemented by all valid instantiations of [`TicklessState`].
#[doc = include_str!("./common.md")]
pub trait TicklessStateTrait: Init + Copy + core::fmt::Debug {
    /// Mark the given hardware tick count as the origin (where
    /// OS tick count is exactly zero).
    ///
    /// To use this method, [`TicklessOptions::resettable`] must be set to
    /// `true` when constructing [`TicklessCfg`].
    ///
    /// `self` must be in the initial state (`Init::INIT`) when this method is
    /// called.
    fn reset(&mut self, cfg: &TicklessCfg, hw_tick_count: u32);

    /// Mark a reference point. Returns the reference point's OS tick count
    /// (in range `0..=cfg.`[`max_tick_count`]`()`).
    ///
    /// `hw_tick_count` should be in range `0..=cfg.`[`hw_max_tick_count`]`()`
    /// and satisfy the requirements of [`TicklessStateTrait::tick_count`].
    ///
    /// All reference points are exactly aligned to OS ticks (microseconds).
    ///
    /// The client should call this method periodically for a correct behavior.
    /// The client should use the [`Self::tick_count_to_hw_tick_count`] method
    /// to determine the next hardware tick count to mark the next reference
    /// point on.
    ///
    /// `cfg` must be the instance of [`TicklessCfg`] that was passed to
    /// [`TicklessState`] to derive `Self`.
    ///
    /// [`max_tick_count`]: TicklessCfg::max_tick_count
    /// [`hw_max_tick_count`]: TicklessCfg::hw_max_tick_count
    fn mark_reference(&mut self, cfg: &TicklessCfg, hw_tick_count: u32) -> u32;

    /// [Mark a reference point] and start measuring the specified time interval
    /// `ticks` (measured in OS ticks = microseconds).
    ///
    /// The caller can use the information contained in the returned
    /// [`Measurement`] to configure timer hardware and receive an interrupt
    /// at the end of measurement.
    ///
    /// `hw_tick_count` should be in range `0..=cfg.`[`hw_max_tick_count`]`()`
    /// and satisfy the requirements of [`TicklessStateTrait::tick_count`].
    ///
    /// `ticks` should be in range `1..=cfg.`[`max_timeout`]`()`.
    ///
    /// [Mark a reference point]: Self::mark_reference
    /// [`hw_max_tick_count`]: TicklessCfg::hw_max_tick_count
    /// [`max_timeout`]: TicklessCfg::max_timeout
    #[inline]
    fn mark_reference_and_measure(
        &mut self,
        cfg: &TicklessCfg,
        hw_tick_count: u32,
        ticks: u32,
    ) -> Measurement {
        debug_assert_ne!(ticks, 0);

        let cur_tick_count = self.mark_reference(cfg, hw_tick_count);
        let end_tick_count = add_mod_u32(cur_tick_count, ticks, cfg.max_tick_count());
        let end_hw_tick_count = self.tick_count_to_hw_tick_count(cfg, end_tick_count);
        let hw_ticks = sub_mod_u32(end_hw_tick_count, hw_tick_count, cfg.hw_max_tick_count());

        #[track_caller]
        #[inline]
        fn add_mod_u32(x: u32, y: u32, max: u32) -> u32 {
            debug_assert!(x <= max);
            debug_assert!(y <= max);
            if max == u32::MAX || (max - x) >= y {
                x.wrapping_add(y)
            } else {
                x.wrapping_add(y).wrapping_add(u32::MAX - max)
            }
        }

        #[track_caller]
        #[inline]
        fn sub_mod_u32(x: u32, y: u32, max: u32) -> u32 {
            debug_assert!(x <= max);
            debug_assert!(y <= max);
            if max == u32::MAX || y < x {
                x.wrapping_sub(y)
            } else {
                x.wrapping_sub(y).wrapping_sub(u32::MAX - max)
            }
        }

        Measurement {
            end_hw_tick_count,
            hw_ticks,
        }
    }

    /// Calculate the earliest hardware tick count representing a point of time
    /// that coincides or follows the one represented by the specified OS tick
    /// count.
    ///
    /// Returns a value in range `0..=cfg.`[`hw_max_tick_count`]`()`.
    ///
    /// `tick_count` must satisfy the following condition: Given a last
    /// reference point `ref_tick_count` (a value returned by
    /// [`mark_reference`]), there must exist `i` such that
    /// `i ∈ 1..=cfg.`[`max_timeout`]`()` and `tick_count == (ref_tick_count +
    /// i) % (cfg.`[`max_tick_count`]`() + 1)`.
    ///
    /// In particular, `tick_count` must not be identical to `ref_tick_count`.
    /// If this was allowed, the result could refer to the past. Consider the
    /// following diagram. In this case, `mark_reference` is called at the 6th
    /// hardware tick, creating a reference point at time 2μs. Now if you call
    /// `tick_count_to_hw_tick_count` with `tick_count = 2`, the returned value
    /// will refer to the 5th hardware tick, which is in the past. Because of
    /// wrap-around arithmetics, it's impossible to tell if the returned value
    /// refers to the past or not.
    ///
    /// <center>
    #[doc = svgbobdoc::transform!(
    /// ```svgbob
    ///                          timer interrupt,
    ///                        calls mark_reference
    ///                                |
    ///                                v
    ///  HW ticks    ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
    ///  ³/₇μs/tick  0                 ,  7                    14
    ///                            ┌───┘
    ///                            '
    ///  OS ticks    ┌──────┬──────┬──────┬──────┬──────┬──────┐
    ///  1μs/tick    0             ^                           6
    ///                            |
    ///                      ref_tick_count
    /// ```
    )]
    /// </center>
    ///
    /// `cfg` must be the instance of [`TicklessCfg`] that was passed to
    /// [`TicklessState`] to derive `Self`.
    ///
    /// [`mark_reference`]: Self::mark_reference
    /// [`max_timeout`]: TicklessCfg::max_timeout
    /// [`max_tick_count`]: TicklessCfg::max_tick_count
    /// [`hw_max_tick_count`]: TicklessCfg::hw_max_tick_count
    fn tick_count_to_hw_tick_count(&self, cfg: &TicklessCfg, tick_count: u32) -> u32;

    /// Get the OS tick count
    /// (in range `0..=cfg.`[`max_tick_count`]`()`).
    ///
    /// `cfg` must be the instance of [`TicklessCfg`] that was passed to
    /// [`TicklessState`] to derive `Self`.
    ///
    /// `hw_tick_count` should be in range `0..=cfg.`[`hw_max_tick_count`]`()`.
    /// In addition, `hw_tick_count` must satisfy the following condition:
    ///
    ///  - Let `ref_hw_tick_count` and `ref_tick_count` be the last reference
    ///    point (the last values passed to and returned by [`mark_reference`],
    ///    respectively).
    ///  - Let `period = cfg.`[`max_tick_count`]`() + 1`.
    ///  - Let `hw_period = cfg.`[`hw_max_tick_count`]`() + 1`.
    ///  - Let `hw_max_timeout = (tick_count_to_hw_tick_count((ref_tick_count +
    ///    cfg.max_timeout) % period) + hw_period - ref_hw_tick_count) %
    ///    hw_period`.
    ///  - There must exist `hw_timeout` and `latency` such that
    ///    `hw_timeout ∈ 0..=hw_max_timeout`, `latency ∈ 0..=hw_headroom_ticks`,
    ///    and `hw_tick_count == (ref_hw_tick_count + hw_timeout + latency) %
    ///    hw_period`.
    ///
    /// **Note:** `ref_hw_tick_count` should not be confused with the
    /// identically-named private field of [`TicklessStateCore`].
    ///
    /// <center>
    #[doc = svgbobdoc::transform!(
    /// ```svgbob
    ///                       ref_hw_tick_count
    ///                                │
    ///          hw_headroom_ticks     │            hw_max_timeout
    ///                  │             v                    │
    ///              ────┴───────,     ,────────────────────┴─────────────────, ,────
    ///                          '     '                                      ' '
    ///              ░░░░░░░░░░░░░     ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
    ///  HW ticks    ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
    ///  ³/₇μs/tick  0                 ,  7                    14             ,     21
    ///                            ┌───┘                                     ┌┘  hw_period
    ///                            '                                         '
    ///  OS ticks    ┌──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┐
    ///  1μs/tick    0             ,      3                    6             ,      12
    ///                            '───────────────────────────────────┬─────'    period
    ///                            ^                                   │
    ///                            |                              max_timeout
    ///                   ref_tick_count
    /// ```
    )]
    /// </center>
    ///
    /// In the above diagram, `hw_tick_count` should fall within the filled
    /// zone.
    ///
    /// [`max_tick_count`]: TicklessCfg::max_tick_count
    /// [`max_timeout`]: TicklessCfg::max_timeout
    /// [`hw_max_tick_count`]: TicklessCfg::hw_max_tick_count
    /// [`mark_reference`]: Self::mark_reference
    fn tick_count(&self, cfg: &TicklessCfg, hw_tick_count: u32) -> u32;
}

/// Result type of [`TicklessStateTrait::mark_reference_and_measure`].
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Measurement {
    /// The hardware tick count at which the measurement ends.
    ///
    /// This value is equal to `(hw_tick_count + self.hw_ticks) %
    /// (cfg.`[`hw_max_tick_count`]`() + 1)`.
    ///
    /// [`hw_max_tick_count`]: TicklessCfg::hw_max_tick_count
    pub end_hw_tick_count: u32,
    /// The number of hardware ticks in the measured interval.
    pub hw_ticks: u32,
}

impl Init for TicklessStatelessCore {
    const INIT: Self = Self;
}

impl<Subticks: Init> Init for TicklessStateCore<Subticks> {
    const INIT: Self = Self {
        ref_tick_count: Init::INIT,
        ref_hw_tick_count: Init::INIT,
        ref_hw_subtick_count: Init::INIT,
    };
}

impl TicklessStateTrait for TicklessStatelessCore {
    fn reset(&mut self, _cfg: &TicklessCfg, _hw_tick_count: u32) {
        // `TicklessStatelessCore` can be chosen only if
        // `TicklessOptions::resettable` was set to `false`
        unreachable!()
    }

    #[inline]
    fn mark_reference(&mut self, cfg: &TicklessCfg, hw_tick_count: u32) -> u32 {
        self.tick_count(cfg, hw_tick_count)
    }

    #[inline]
    fn tick_count_to_hw_tick_count(&self, cfg: &TicklessCfg, tick_count: u32) -> u32 {
        // ceil(tick_count * (hw_ticks_per_micro + hw_subticks_per_micro / division))
        //  = tick_count * hw_ticks_per_micro + ceil(tick_count * hw_subticks_per_micro / division)
        let mut hw_tick_count = (tick_count * cfg.hw_ticks_per_micro).wrapping_add(ceil_div128(
            tick_count as u128 * cfg.hw_subticks_per_micro as u128,
            cfg.division as u128,
        )
            as u32);

        // Wrap around
        let hw_max_tick_count = cfg.hw_max_tick_count();
        if hw_max_tick_count != u32::MAX && hw_tick_count == hw_max_tick_count + 1 {
            hw_tick_count = 0;
        }

        debug_assert!(hw_tick_count <= hw_max_tick_count);
        hw_tick_count
    }

    #[inline]
    fn tick_count(&self, cfg: &TicklessCfg, hw_tick_count: u32) -> u32 {
        // floor(hw_tick_count /
        //       (hw_ticks_per_micro + hw_subticks_per_micro / division))
        //  = floor((hw_tick_count * division) /
        //          (hw_ticks_per_micro * division + hw_subticks_per_micro))
        let tick_count: u128 = (hw_tick_count as u128 * cfg.division as u128)
            / (cfg.hw_ticks_per_micro as u128 * cfg.division as u128
                + cfg.hw_subticks_per_micro as u128);

        debug_assert!(tick_count <= u32::MAX as u128);

        tick_count as u32
    }
}

impl<Subticks: WrappingTrait> TicklessStateTrait for TicklessStateCore<Subticks> {
    #[inline]
    fn reset(&mut self, _cfg: &TicklessCfg, hw_tick_count: u32) {
        debug_assert_eq!(self.ref_tick_count, 0);
        self.ref_hw_tick_count = hw_tick_count;
    }

    #[inline]
    fn mark_reference(&mut self, cfg: &TicklessCfg, hw_tick_count: u32) -> u32 {
        // Calculate the tick count
        let new_ref_tick_count = self.tick_count(cfg, hw_tick_count);

        let advance_micros = new_ref_tick_count.wrapping_sub(self.ref_tick_count);
        self.ref_tick_count = new_ref_tick_count;

        self.ref_hw_tick_count = self
            .ref_hw_tick_count
            .wrapping_add(advance_micros.wrapping_mul(cfg.hw_ticks_per_micro));

        let overflow = self.ref_hw_subtick_count.wrapping_add_assign128_multi32(
            cfg.hw_subticks_per_micro as u128 * advance_micros as u128,
        );
        self.ref_hw_tick_count = self.ref_hw_tick_count.wrapping_add(overflow);

        new_ref_tick_count
    }

    #[inline]
    fn tick_count_to_hw_tick_count(&self, cfg: &TicklessCfg, tick_count: u32) -> u32 {
        debug_assert_ne!(tick_count, self.ref_tick_count);

        let micros = tick_count.wrapping_sub(self.ref_tick_count);
        // ceil(ref_hw_tick_count + ref_hw_subtick_count / division +
        //      micros * (hw_ticks_per_micro + hw_subticks_per_micro / division))
        //  = ceil(ref_hw_subtick_count / division +
        //        micros * (hw_ticks_per_micro + hw_subticks_per_micro / division))
        //     + ref_hw_tick_count
        //  = ceil((
        //       ref_hw_subtick_count +
        //       micros * (hw_ticks_per_micro * division + hw_subticks_per_micro)
        //    ) / division) + ref_hw_tick_count
        let division = cfg.division as u128;
        let ref_hw_tick_count = self.ref_hw_tick_count;
        let ref_hw_subtick_count = self.ref_hw_subtick_count.to_u128();
        let hw_ticks_per_micro = cfg.hw_ticks_per_micro as u128;
        let hw_subticks_per_micro = cfg.hw_subticks_per_micro as u128;
        ref_hw_tick_count.wrapping_add(ceil_div128(
            ref_hw_subtick_count
                + micros as u128 * (hw_ticks_per_micro * division + hw_subticks_per_micro),
            division,
        ) as u32)
    }

    #[inline]
    fn tick_count(&self, cfg: &TicklessCfg, hw_tick_count: u32) -> u32 {
        // (hw_tick_count - (ref_hw_tick_count + ref_hw_subtick_count / division))
        //      / (hw_ticks_per_micro + hw_subticks_per_micro / division) + ref_tick_count
        //  = ((hw_tick_count - ref_hw_tick_count) * division - ref_hw_subtick_count)
        //         / (hw_ticks_per_micro * division + hw_subticks_per_micro) + ref_tick_count
        let division = cfg.division as u128;
        let ref_hw_tick_count = self.ref_hw_tick_count;
        let ref_hw_subtick_count = self.ref_hw_subtick_count.to_u128();
        let hw_ticks_per_micro = cfg.hw_ticks_per_micro as u128;
        let hw_subticks_per_micro = cfg.hw_subticks_per_micro as u128;
        self.ref_tick_count.wrapping_add(
            ((hw_tick_count.wrapping_sub(ref_hw_tick_count) as u128 * division
                - ref_hw_subtick_count)
                / (hw_ticks_per_micro * division + hw_subticks_per_micro)) as u32,
        )
    }
}

#[cfg(test)]
mod tests {
    extern crate std;

    use super::*;
    use itertools::merge;
    use std::{prelude::v1::*, vec};

    /// Compare the output of `TicklessCfg` to known values.
    #[test]
    fn tickless_known_values() {
        // 1Hz clock, 1-cycle period = 1s, 1-cycle latency tolerance
        assert_eq!(
            TicklessCfg::new(TicklessOptions {
                hw_freq_num: 1,
                hw_freq_denom: 1,
                hw_headroom_ticks: 1,
                force_full_hw_period: false,
                resettable: false,
            })
            .unwrap(),
            TicklessCfg {
                hw_ticks_per_micro: 0,
                hw_subticks_per_micro: 1,
                algorithm: TicklessAlgorithm::Stateless {
                    hw_max_tick_count: 4_293,
                    max_tick_count: 4_293_999_999,
                },
                division: 1_000_000,
                max_timeout: 4_292_000_000,
            },
        );

        // 1Hz clock, 1-cycle period = 1s, 1-cycle latency tolerance
        // `hw_max_tick_count` is fixed at `u32::MAX`
        assert_eq!(
            TicklessCfg::new(TicklessOptions {
                hw_freq_num: 1,
                hw_freq_denom: 1,
                hw_headroom_ticks: 1,
                force_full_hw_period: true,
                resettable: false,
            })
            .unwrap(),
            TicklessCfg {
                hw_ticks_per_micro: 0,
                hw_subticks_per_micro: 1,
                algorithm: TicklessAlgorithm::Stateful,
                division: 1_000_000,
                max_timeout: 4_292_967_296,
            },
        );
    }

    /// The clock frequency given to `TicklessCfg` must not be zero.
    #[test]
    fn tickless_zero_freq() {
        assert_eq!(
            TicklessCfg::new(TicklessOptions {
                hw_freq_num: 0,
                hw_freq_denom: 1,
                hw_headroom_ticks: 1,
                force_full_hw_period: false,
                resettable: false,
            }),
            Err(CfgError::FreqNumZero)
        );
    }

    /// The denominator of the clock frequency given to `TicklessCfg` must not be
    /// zero.
    #[test]
    fn tickless_zero_denom() {
        assert_eq!(
            TicklessCfg::new(TicklessOptions {
                hw_freq_num: 1,
                hw_freq_denom: 0,
                hw_headroom_ticks: 1,
                force_full_hw_period: false,
                resettable: false,
            }),
            Err(CfgError::FreqDenomZero)
        );
    }

    /// `TicklessCfg` should reject a timer frequency that is too fast.
    #[test]
    fn tickless_tick_too_fast() {
        // 2³²MHz → 2³² HW ticks/μs
        assert_eq!(
            TicklessCfg::new(TicklessOptions {
                hw_freq_num: 1_000_000 * 0x1_0000_0000,
                hw_freq_denom: 1,
                hw_headroom_ticks: 0,
                force_full_hw_period: false,
                resettable: false,
            }),
            Err(CfgError::FreqTooHigh)
        );
    }

    /// `TicklessCfg` should reject if an intermediate value overflows.
    #[test]
    fn tickless_tick_too_complex() {
        // 1.00000000000000000043368086899420177... Hz
        // (0x1fffffffffffffff is a Mersenne prime number.)
        assert_eq!(
            TicklessCfg::new(TicklessOptions {
                hw_freq_num: 0x1fffffffffffffff,
                hw_freq_denom: 0x1ffffffffffffffe,
                hw_headroom_ticks: 0,
                force_full_hw_period: false,
                resettable: false,
            }),
            Err(CfgError::InternalOverflow)
        );
    }

    #[quickcheck_macros::quickcheck]
    fn quickcheck_cfg(
        hw_freq_num: u64,
        hw_freq_denom: u64,
        hw_headroom_ticks: u32,
        force_full_hw_period: bool,
        resettable: bool,
    ) {
        // `TicklessCfg::new` includes various integrity checks
        let _ = TicklessCfg::new(TicklessOptions {
            hw_freq_num,
            hw_freq_denom,
            hw_headroom_ticks,
            force_full_hw_period,
            resettable,
        });
    }

    #[derive(Debug, Copy, Clone)]
    struct Op {
        timeout: u32,
        latency: u32,
    }

    /// Choose some values from `x`. The returned values are sorted in an
    /// ascending order and always include the endpoints.
    fn choose_values_from_range(x: std::ops::RangeInclusive<u32>) -> Box<dyn Iterator<Item = u32>> {
        if x.end() - x.start() < 10 {
            // Return all values
            Box::new(x)
        } else {
            Box::new((0..=10).map(move |i| {
                if i < 2 {
                    x.start() + i
                } else if i < 8 {
                    x.start() + 2 + (x.end() - x.start() - 4) / 6 * (i - 2)
                } else {
                    x.end() - (10 - i)
                }
            }))
        }
    }

    #[track_caller]
    fn add_mod(x: u32, y: u32, modulus: u64) -> u32 {
        assert!((x as u64) < modulus);
        assert!((y as u64) < modulus);
        ((x as u64 + y as u64) % modulus) as u32
    }

    #[track_caller]
    fn sub_mod(x: u32, y: u32, modulus: u64) -> u32 {
        assert!((x as u64) < modulus);
        assert!((y as u64) < modulus);
        if x < y {
            (x as u64 + modulus - y as u64) as u32
        } else {
            x - y
        }
    }

    macro tickless_simulate(
        mod $ident:ident {},
        $freq_num:expr,
        $freq_denom:expr,
        $hw_headroom_ticks:expr,
        $force_full_hw_period:expr,
        $resettable:expr $(,)*
    ) {
        mod $ident {
            use super::*;

            const CFG: TicklessCfg = match TicklessCfg::new(TicklessOptions {
                hw_freq_num: $freq_num,
                hw_freq_denom: $freq_denom,
                hw_headroom_ticks: $hw_headroom_ticks,
                force_full_hw_period: $force_full_hw_period,
                resettable: $resettable,
            }) {
                Ok(x) => x,
                Err(e) => e.panic(),
            };
            const MAX_TIMEOUT: u32 = CFG.max_timeout();
            const HW_PERIOD: u64 = CFG.hw_max_tick_count() as u64 + 1;
            const PERIOD: u64 = CFG.max_tick_count() as u64 + 1;

            // Work-around for [ref:false_unconstrained_generic_const_on_type_alias]
            type TheTicklessState = TicklessState<CFG>;

            fn do_test(ops: impl IntoIterator<Item = Op>) {
                let mut state: TheTicklessState = Init::INIT;
                let mut hw_tick_count: u32 = 0;

                let _ = env_logger::builder().is_test(true).try_init();

                log::info!("CFG = {CFG:?}");
                log::info!("MAX_TIMEOUT = {MAX_TIMEOUT:?}");
                log::info!("HW_PERIOD = {HW_PERIOD:?}");
                log::info!("PERIOD = {PERIOD:?}");

                if $resettable {
                    hw_tick_count = 0x1234567;

                    // The current implement chooses the stateful algorithm
                    // (`hw_max_tick_count == u32::MAX`) when `resettable` is
                    // set
                    assert!(hw_tick_count <= CFG.hw_max_tick_count());

                    state.reset(&CFG, hw_tick_count);
                }

                let tick_count = state.tick_count(&CFG, hw_tick_count);
                log::trace!("    HW = {hw_tick_count}, OS = {tick_count}");
                assert_eq!(tick_count, 0);

                for op in ops {
                    log::debug!("  {op:?}");

                    let mut state2 = state;
                    let start_tick_count = state.mark_reference(&CFG, hw_tick_count);

                    log::trace!("    HW = {hw_tick_count}, OS = {start_tick_count}");
                    log::trace!("    state = {state:?}");

                    assert_eq!(state.tick_count(&CFG, hw_tick_count), start_tick_count);

                    // How many HW ticks does it take to wait for `op.timeout`?
                    let end_hw_tick_count = if op.timeout == 0 {
                        hw_tick_count
                    } else {
                        let end_tick_count = add_mod(start_tick_count, op.timeout, PERIOD);
                        log::trace!("    Want to wait until OS = {end_tick_count}");
                        state.tick_count_to_hw_tick_count(&CFG, end_tick_count)
                    };
                    let len_hw_tick_count = sub_mod(end_hw_tick_count, hw_tick_count, HW_PERIOD);

                    // Do the same calculatioon with `mark_reference_and_measure`.
                    // The two results must be congruent. Skip this if `op.timeout
                    // == 0`, in which case `mark_reference_and_measure` should
                    // not be used.
                    if op.timeout != 0 {
                        let measurement =
                            state2.mark_reference_and_measure(&CFG, hw_tick_count, op.timeout);

                        assert_eq!(measurement.end_hw_tick_count, end_hw_tick_count);
                        assert_eq!(measurement.hw_ticks, len_hw_tick_count);
                    }

                    log::trace!(
                        "    Should wait for {len_hw_tick_count} HW ticks (end HW = {end_hw_tick_count})"
                    );

                    // Extend the timeout by an interrupt latency
                    let late_len_hw_tick_count = len_hw_tick_count + op.latency;
                    assert!(late_len_hw_tick_count <= CFG.hw_max_tick_count());

                    log::trace!("    Will wait for {late_len_hw_tick_count} HW ticks");

                    // OS tick count should increase monotonically (this
                    // property is assumed, not checked here) while we are
                    // waiting for the next tick
                    let mut last_tick_count = start_tick_count;
                    let mut elapsed = 0;
                    let sample_points = merge(
                        choose_values_from_range(0..=late_len_hw_tick_count),
                        vec![len_hw_tick_count.saturating_sub(1), len_hw_tick_count],
                    );
                    for hw_elapsed in sample_points {
                        log::trace!("    - HW = {hw_tick_count} + {hw_elapsed}");

                        let hw_tick_count = add_mod(hw_tick_count, hw_elapsed, HW_PERIOD);
                        let tick_count = state.tick_count(&CFG, hw_tick_count);
                        elapsed += sub_mod(tick_count, last_tick_count, PERIOD);
                        last_tick_count = tick_count;

                        log::trace!("      OS = {tick_count} ({start_tick_count} + {elapsed})");

                        // The OS tick count shouldn't increase more than
                        // `CFG.max_tick_count()` between timer interrupts or
                        // the kernel would lose track of time
                        assert!(elapsed <= CFG.max_tick_count());

                        if hw_elapsed < len_hw_tick_count {
                            // `len_hw_tick_count` must be the minimum amount
                            // of waiting required to fulfill the request
                            assert!(elapsed < op.timeout);
                        }
                    }

                    // Must wait at least for the specified duration
                    assert!(elapsed >= op.timeout);

                    hw_tick_count = add_mod(hw_tick_count, late_len_hw_tick_count, HW_PERIOD);
                }
            }

            #[test]
            fn ones() {
                do_test(
                    std::iter::repeat(Op {
                        timeout: 1,
                        latency: 0,
                    })
                    .take(10),
                );
            }

            #[test]
            fn ones_max_latency() {
                do_test(
                    std::iter::repeat(Op {
                        timeout: 1,
                        latency: $hw_headroom_ticks,
                    })
                    .take(10),
                );
            }

            #[test]
            fn max_timeout_max_latency() {
                do_test(
                    std::iter::repeat(Op {
                        timeout: MAX_TIMEOUT,
                        latency: $hw_headroom_ticks,
                    })
                    .take(10),
                );
            }

            #[test]
            fn max_timeout() {
                do_test(
                    std::iter::repeat(Op {
                        timeout: MAX_TIMEOUT,
                        latency: 0,
                    })
                    .take(10),
                );
            }

            #[test]
            fn max_timeout_and_zero() {
                do_test(vec![
                    Op {
                        timeout: MAX_TIMEOUT,
                        latency: 0,
                    },
                    Op {
                        timeout: 0,
                        latency: 0,
                    },
                    Op {
                        timeout: MAX_TIMEOUT,
                        latency: 0,
                    },
                    Op {
                        timeout: 0,
                        latency: 0,
                    },
                ]);
            }

            #[quickcheck_macros::quickcheck]
            fn quickcheck(values: Vec<u64>, s1: u32, s2: u32) {
                do_test(
                    values
                        .chunks_exact(2)
                        .map(|c| Op {
                            timeout: (c[0].rotate_left(s1) % (MAX_TIMEOUT as u64 + 1)) as u32,
                            latency: (c[1].rotate_left(s2) % ($hw_headroom_ticks + 1)) as u32,
                        })
                        .take(10),
                );
            }
        }
    }

    tickless_simulate!(mod sim1 {}, 1, 1, 1, false, false);
    tickless_simulate!(mod sim2 {}, 125_000_000, 1, 125, false, false);
    tickless_simulate!(mod sim3 {}, 375_000_000, 1, 1250, false, false);
    tickless_simulate!(mod sim4 {}, 125_000_000, 3, 0, false, false);
    tickless_simulate!(mod sim5 {}, 125_000_000, 3, 125, false, false);
    tickless_simulate!(mod sim6 {}, 125_000_000, 3, 125_000_000, false, false);
    tickless_simulate!(mod sim7 {}, 125_000_000, 3, 0xffff_ffa7, false, false);
    tickless_simulate!(mod sim8 {}, 10_000_000, 1, 1, false, false);
    tickless_simulate!(mod sim9 {}, 375, 1, 250_000, false, false);
    tickless_simulate!(mod sim10 {}, 1, 260, 0, false, false);
    tickless_simulate!(mod sim11 {}, 1, 260, 1, false, false);
    tickless_simulate!(mod sim12 {}, 1, 260, 10, false, false);
    tickless_simulate!(mod sim13 {}, 0x501e_e2c2_9a0f, 0xb79a, 0, false, false);
    tickless_simulate!(mod sim14 {}, 0x501e_e2c2_9a0f, 0xb79a, 0x64, false, false);
    tickless_simulate!(
        mod sim15 {},
        0x501e_e2c2_9a0f,
        0xb79a,
        0x1_0000,
        false,
        false
    );
    tickless_simulate!(mod sim16 {}, 0x501e_e2c2_9a0f, 0xb79a_14f3, 0, false, false);
    tickless_simulate!(
        mod sim17 {},
        0x501e_e2c2_9a0f,
        0xb79a_14f3,
        0x64,
        false,
        false
    );
    tickless_simulate!(mod sim18 {}, 0xb79a_14f3, 0x1e_e2c2_9a0f, 1, false, false);
    tickless_simulate!(
        mod sim19 {},
        0xff_ffff_ffff_ffff,
        0xff_ffff_fffe,
        0x41,
        false,
        false,
    );

    tickless_simulate!(mod sim1_full {}, 1, 1, 1, true, false);
    tickless_simulate!(mod sim2_full {}, 125_000_000, 1, 125, true, false);
    tickless_simulate!(mod sim3_full {}, 375_000_000, 1, 1250, true, false);
    tickless_simulate!(mod sim4_full {}, 125_000_000, 3, 0, true, false);
    tickless_simulate!(mod sim5_full {}, 125_000_000, 3, 125, true, false);
    tickless_simulate!(mod sim6_full {}, 125_000_000, 3, 125_000_000, true, false);
    tickless_simulate!(mod sim7_full {}, 125_000_000, 3, 0xffff_ffa7, true, false);
    tickless_simulate!(mod sim8_full {}, 10_000_000, 1, 1, true, false);
    tickless_simulate!(mod sim9_full {}, 375, 1, 250_000, true, false);
    tickless_simulate!(mod sim10_full {}, 1, 260, 0, true, false);
    tickless_simulate!(mod sim11_full {}, 1, 260, 1, true, false);
    tickless_simulate!(mod sim12_full {}, 1, 260, 10, true, false);
    tickless_simulate!(mod sim13_full {}, 0x501e_e2c2_9a0f, 0xb79a, 0, true, false);
    tickless_simulate!(
        mod sim14_full {},
        0x501e_e2c2_9a0f,
        0xb79a,
        0x64,
        true,
        false
    );
    tickless_simulate!(
        mod sim15_full {},
        0x501e_e2c2_9a0f,
        0xb79a,
        0x1_0000,
        true,
        false
    );
    tickless_simulate!(
        mod sim16_full {},
        0x501e_e2c2_9a0f,
        0xb79a_14f3,
        0,
        true,
        false
    );
    tickless_simulate!(
        mod sim17_full {},
        0x501e_e2c2_9a0f,
        0xb79a_14f3,
        0x64,
        true,
        false
    );
    tickless_simulate!(
        mod sim18_full {},
        0xb79a_14f3,
        0x1e_e2c2_9a0f,
        1,
        true,
        false
    );
    tickless_simulate!(
        mod sim19_full {},
        0xff_ffff_ffff_ffff,
        0xff_ffff_fffe,
        0x41,
        true,
        false,
    );

    tickless_simulate!(mod sim1_reset {}, 1, 1, 1, false, true);
    tickless_simulate!(mod sim2_reset {}, 125_000_000, 1, 125, false, true);
    tickless_simulate!(mod sim3_reset {}, 375_000_000, 1, 1250, false, true);
    tickless_simulate!(mod sim4_reset {}, 125_000_000, 3, 0, false, true);
    tickless_simulate!(mod sim5_reset {}, 125_000_000, 3, 125, false, true);
    tickless_simulate!(mod sim6_reset {}, 125_000_000, 3, 125_000_000, false, true);
    tickless_simulate!(mod sim7_reset {}, 125_000_000, 3, 0xffff_ffa7, false, true);
    tickless_simulate!(mod sim8_reset {}, 10_000_000, 1, 1, false, true);
    tickless_simulate!(mod sim9_reset {}, 375, 1, 250_000, false, true);
    tickless_simulate!(mod sim10_reset {}, 1, 260, 0, false, true);
    tickless_simulate!(mod sim11_reset {}, 1, 260, 1, false, true);
    tickless_simulate!(mod sim12_reset {}, 1, 260, 10, false, true);
    tickless_simulate!(mod sim13_reset {}, 0x501e_e2c2_9a0f, 0xb79a, 0, false, true);
    tickless_simulate!(
        mod sim14_reset {},
        0x501e_e2c2_9a0f,
        0xb79a,
        0x64,
        false,
        true
    );
    tickless_simulate!(
        mod sim15_reset {},
        0x501e_e2c2_9a0f,
        0xb79a,
        0x1_0000,
        false,
        true
    );
    tickless_simulate!(
        mod sim16_reset {},
        0x501e_e2c2_9a0f,
        0xb79a_14f3,
        0,
        false,
        true
    );
    tickless_simulate!(
        mod sim17_reset {},
        0x501e_e2c2_9a0f,
        0xb79a_14f3,
        0x64,
        false,
        true
    );
    tickless_simulate!(
        mod sim18_reset {},
        0xb79a_14f3,
        0x1e_e2c2_9a0f,
        1,
        false,
        true
    );
    tickless_simulate!(
        mod sim19_reset {},
        0xff_ffff_ffff_ffff,
        0xff_ffff_fffe,
        0x41,
        false,
        true,
    );
}