1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//! Simulates a hardware scheduler.
use r3_core::{
    kernel::interrupt::{InterruptHandlerFn, InterruptNum, InterruptPriority},
    utils::Init,
};
use r3_kernel::KernelTraits;
use std::collections::{BTreeSet, HashMap};

use crate::{ums, ThreadRole, NUM_INTERRUPT_LINES, THREAD_ROLE};

/// The state of the simulated hardware scheduler.
pub struct SchedState {
    /// Interrupt lines.
    int_lines: HashMap<InterruptNum, IntLine>,
    /// `int_lines.iter().filter(|_,a| a.pended && a.enable)
    /// .map(|i,a| (a.priority, i)).collect()`.
    pended_lines: BTreeSet<(InterruptPriority, InterruptNum)>,
    active_int_handlers: Vec<(InterruptPriority, ums::ThreadId)>,
    pub cpu_lock: bool,

    /// The currently-selected task thread.
    pub task_thread: Option<ums::ThreadId>,

    /// Garbage can
    zombies: Vec<ums::ThreadId>,
}

/// The configuration of an interrupt line.
#[derive(Debug)]
pub struct IntLine {
    pub priority: InterruptPriority,
    pub start: Option<InterruptHandlerFn>,
    pub enable: bool,
    pub pended: bool,
}

impl Init for IntLine {
    const INIT: Self = IntLine {
        priority: 0,
        start: None,
        enable: false,
        pended: false,
    };
}

pub struct BadIntLineError;

impl SchedState {
    pub fn new<Traits: KernelTraits>() -> Self {
        let mut this = Self {
            int_lines: HashMap::new(),
            pended_lines: BTreeSet::new(),
            active_int_handlers: Vec::new(),
            cpu_lock: true,
            task_thread: None,
            zombies: Vec::new(),
        };

        for i in 0..NUM_INTERRUPT_LINES {
            if let Some(handler) = Traits::INTERRUPT_HANDLERS.get(i) {
                this.int_lines.insert(
                    i as InterruptNum,
                    IntLine {
                        start: Some(handler),
                        ..IntLine::INIT
                    },
                );
            }
        }

        this
    }

    pub fn update_line(
        &mut self,
        i: InterruptNum,
        f: impl FnOnce(&mut IntLine),
    ) -> Result<(), BadIntLineError> {
        if i >= NUM_INTERRUPT_LINES {
            return Err(BadIntLineError);
        }
        let line = self.int_lines.entry(i).or_insert_with(|| IntLine::INIT);
        self.pended_lines.remove(&(line.priority, i));
        f(line);
        if line.enable && line.pended {
            self.pended_lines.insert((line.priority, i));
        }
        Ok(())
    }

    pub fn is_line_pended(&self, i: InterruptNum) -> Result<bool, BadIntLineError> {
        if i >= NUM_INTERRUPT_LINES {
            return Err(BadIntLineError);
        }

        if let Some(line) = self.int_lines.get(&i) {
            Ok(line.pended)
        } else {
            Ok(false)
        }
    }

    /// Schedule the specified thread until it naturally exits.
    pub fn recycle_thread(&mut self, thread_id: ums::ThreadId) {
        self.zombies.push(thread_id);
    }
}

impl ums::Scheduler for SchedState {
    fn choose_next_thread(&mut self) -> Option<ums::ThreadId> {
        if let Some(&thread_id) = self.zombies.first() {
            // Clean up zombie threads as soon as possible
            Some(thread_id)
        } else if let Some(&(_, thread_id)) = self.active_int_handlers.last() {
            Some(thread_id)
        } else if self.cpu_lock {
            // CPU Lock owned by a task thread
            Some(self.task_thread.unwrap())
        } else {
            self.task_thread
        }
    }

    fn thread_exited(&mut self, thread_id: ums::ThreadId) {
        let Some(i) = self.zombies.iter().position(|id| *id == thread_id)
        else {
            log::warn!("thread_exited: unexpected thread {thread_id:?}");
            return;
        };

        log::trace!("removing the zombie thread {thread_id:?}");
        self.zombies.swap_remove(i);
    }
}

/// Check for any pending interrupts that can be activated under the current
/// condition. If there are one or more of them, activate them and return
/// `true`, in which case the caller should call
/// [`ums::ThreadGroupLockGuard::preempt`], [`ums::yield_now`],
/// [`ums::exit_thread`].
///
/// This should be called after changing some properties of `SchedState` in a
/// way that might cause interrupt handlers to activate, such as disabling
/// `cpu_lock`.
#[must_use]
pub fn check_preemption_by_interrupt(
    thread_group: &'static ums::ThreadGroup<SchedState>,
    lock: &mut ums::ThreadGroupLockGuard<SchedState>,
) -> bool {
    let mut activated_any = false;

    // Check pending interrupts
    loop {
        let sched_state = lock.scheduler();

        // Find the highest pended priority
        let Some(&(pri, num)) = sched_state.pended_lines.iter().next()
        else {
            // No interrupt is pended
            break;
        };

        // Masking by CPU Lock
        if sched_state.cpu_lock && is_interrupt_priority_managed(pri) {
            log::trace!("not handling an interrupt with priority {pri} because of CPU Lock");
            break;
        }

        // Masking by an already active interrupt
        if let Some(&(existing_pri, _)) = sched_state.active_int_handlers.last() {
            if existing_pri < pri {
                log::trace!(
                    "not handling an interrupt with priority {pri} because of \
                    an active interrupt handler with priority {existing_pri}",
                );
                break;
            }
        }

        // Take the interrupt
        sched_state.pended_lines.remove(&(pri, num));

        // Find the interrupt handler for `num`. Return
        // `default_interrupt_handler` if there's none.
        let start = sched_state
            .int_lines
            .get(&num)
            .and_then(|line| line.start)
            .unwrap_or(default_interrupt_handler);

        let thread_id = lock.spawn(move |thread_id| {
            THREAD_ROLE.with(|role| role.set(ThreadRole::Interrupt));

            // Safety: The port can call an interrupt handler
            unsafe { start() }

            let mut lock = thread_group.lock();

            // Make this interrupt handler inactive
            let (_, popped_thread_id) = lock.scheduler().active_int_handlers.pop().unwrap();
            assert_eq!(thread_id, popped_thread_id);
            log::trace!("an interrupt handler for an interrupt {num} (priority = {pri}) exited");

            // Make sure this thread will run to completion
            lock.scheduler().zombies.push(thread_id);

            let _ = check_preemption_by_interrupt(thread_group, &mut lock);
        });

        log::trace!("handling an interrupt {num} (priority = {pri}) with thread {thread_id:?}");

        lock.scheduler().active_int_handlers.push((pri, thread_id));

        activated_any = true;
    }

    activated_any
}

fn is_interrupt_priority_managed(p: InterruptPriority) -> bool {
    p >= 0
}

extern "C" fn default_interrupt_handler() {
    panic!("Unhandled interrupt");
}