1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
use core::ops::Range;
/// Generate [startup code]. **Requires [`StartupOptions`] and [`EntryPoint`] to
/// be implemented.**
///
/// This macro produces an entry point function whose symbol name is `start`.
/// You should specify it as an entry point in your linker script (the provided
/// linker scripts automatically do this for you).
///
/// [startup code]: crate#startup-code
/// [`EntryPoint`]: crate::EntryPoint
#[macro_export]
macro_rules! use_startup {
(unsafe $Traits:ty) => {
#[no_mangle]
#[naked]
pub unsafe extern "C" fn start() {
::core::arch::asm!(
"b {}",
sym $crate::startup::imp::start::<$Traits>,
options(noreturn),
);
}
};
}
/// The options for [`use_startup!`].
pub trait StartupOptions {
/// The memory map.
///
/// Note that the kernel code and the startup code don't support relocation,
/// so you need to make sure they are covered by an identical mapping.
///
/// At least one of `0x0000000` and `0xffff0000` must left unmapped so that
/// an exception vector table can be placed there.
///
/// # Examples
///
/// ```
/// use r3_port_arm::MemoryMapSection;
///
/// // Renesas RZ/A1H
/// const MEMORY_MAP: &'static [MemoryMapSection] = &[
/// // On-chip RAM (10MB)
/// MemoryMapSection::new(0x2000_0000..0x20a0_0000, 0x2000_0000).with_executable(true),
/// // I/O areas
/// MemoryMapSection::new(0x3fe0_0000..0x4000_0000, 0x3fe0_0000).as_device_memory(),
/// MemoryMapSection::new(0xe800_0000..0xe830_0000, 0xe800_0000).as_device_memory(),
/// MemoryMapSection::new(0xfc00_0000..0xfc10_0000, 0xfc00_0000).as_device_memory(),
/// MemoryMapSection::new(0xfcf0_0000..0xfd00_0000, 0xfcf0_0000).as_device_memory(),
/// ];
/// ```
const MEMORY_MAP: &'static [MemoryMapSection];
}
#[derive(Debug, Copy, Clone)]
pub struct MemoryMapSection {
/// The starting physical address. Must be aligned to 1MiB blocks.
pub(super) physical_start: u64,
/// The starting virtual address. Must be aligned to 1MiB blocks.
pub(super) virtual_start: usize,
/// The length of the section, measured in bytes. Must be aligned to 1MiB
/// blocks.
pub(super) len: usize,
pub(super) attr: MemoryRegionAttributes,
}
impl MemoryMapSection {
/// Construct a `MemoryMapSection` for normal read/write memory access.
///
/// - All endpoints must be aligned to 1MiB blocks (`0x???0_0000`).
///
/// - `virtual_range` must not be empty.
///
/// - `virtual_range` must be a strict subset of `0..0x1_0000_0000`.
///
/// - `physical_start` is of type `u64`, but using a large physical address
/// (> 4GiB) isn't supported yet.
///
/// The memory section is configured as a read/writable (but not
/// executable) Normal memory with a Outer and Inner Write-Back,
/// Write-Allocate attribute.
///
/// # Examples
///
/// ```rust
/// use r3_port_arm::MemoryMapSection;
///
/// // Map VA `0x2000_0000..0x2800_0000` to PA `0xc000_0000.0xc800_0000`
/// MemoryMapSection::new(0x2000_0000..0x2800_0000, 0xc000_0000);
/// ```
///
/// This function panics if an invalid parameter is supplied.
///
/// ```rust,should_panic
/// # use r3_port_arm::MemoryMapSection;
/// // Empty range
/// MemoryMapSection::new(0x2000_0000..0x2000_0000, 0xc000_0000);
/// ```
///
/// ```rust,should_panic
/// # use r3_port_arm::MemoryMapSection;
/// // VA is not in range `0..0x1_0000_0000`
/// MemoryMapSection::new(0x9000_0000..0x11000_0000, 0xc000_0000);
/// ```
pub const fn new(virtual_range: Range<u64>, physical_start: u64) -> Self {
if (virtual_range.start & 0xfffff) != 0
|| (virtual_range.end & 0xfffff) != 0
|| (physical_start & 0xfffff) != 0
{
panic!("all endpoints must be aligned to 1MiB blocks");
}
if virtual_range.start >= virtual_range.end {
panic!("`virtual_range` must not be empty");
}
// `<Range as PartialEq>::eq` is not `const fn` yet
// [ref:range_const_partial_eq]
if virtual_range.end > 0x1_0000_0000
|| (virtual_range.start == 0 && virtual_range.end == 0x1_0000_0000)
{
panic!("`virtual_range` must be a strict subset of `0..0x1_0000_0000`");
}
Self {
physical_start,
virtual_start: virtual_range.start as usize,
len: (virtual_range.end - virtual_range.start) as usize,
attr: MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE,
}
}
/// Modify the memory attribute for a Device memory, returning the modified
/// `self`.
pub const fn as_device_memory(self) -> Self {
Self {
attr: self.attr.as_device_memory(),
..self
}
}
/// Change the sharability, returning the modified `self`.
pub const fn with_sharable(self, sharable: bool) -> Self {
Self {
attr: self.attr.with_sharable(sharable),
..self
}
}
/// Change the executability, returning the modified `self`.
pub const fn with_executable(self, executable: bool) -> Self {
Self {
attr: self.attr.with_executable(executable),
..self
}
}
/// Change the writability, returning the modified `self`.
pub const fn with_writable(self, writable: bool) -> Self {
Self {
attr: self.attr.with_writable(writable),
..self
}
}
}
#[derive(Debug, Copy, Clone, PartialEq)]
pub(super) struct MemoryRegionAttributes {
pub tex: u8,
pub c: bool,
pub b: bool,
pub s: bool,
pub ap: u8,
pub xn: bool,
}
impl MemoryRegionAttributes {
pub(super) const NORMAL_WB_WA_SHARABLE_READ_WRITE: Self = Self {
tex: 0b001,
c: true,
b: true,
s: true,
ap: 0b011,
xn: true,
};
const fn as_device_memory(self) -> Self {
if self.s {
// Shareable device
Self {
tex: 0b000,
c: false,
b: true,
..self
}
} else {
// Non-shareable device
Self {
tex: 0b010,
c: false,
b: false,
..self
}
}
}
pub(super) const fn with_sharable(self, sharable: bool) -> Self {
if self.tex == 0b000 || self.tex == 0b010 {
if sharable {
// Shareable device
Self {
tex: 0b000,
c: false,
b: true,
s: sharable,
..self
}
} else {
// Non-shareable device
Self {
tex: 0b010,
c: false,
b: false,
s: sharable,
..self
}
}
} else {
Self {
s: sharable,
..self
}
}
}
pub(super) const fn with_executable(self, executable: bool) -> Self {
Self {
xn: !executable,
..self
}
}
pub(super) const fn with_writable(self, writable: bool) -> Self {
Self {
ap: if writable { 0b011 } else { 0b111 },
..self
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn memory_attributes() {
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE.as_device_memory(),
MemoryRegionAttributes {
tex: 0b000,
c: false,
b: true,
s: true,
ap: 0b011,
xn: true,
},
);
// Sharable by default
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE
.as_device_memory()
.with_sharable(true),
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE.as_device_memory(),
);
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE.with_sharable(true),
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE,
);
// No Execute by default
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE.with_executable(false),
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE,
);
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE
.as_device_memory()
.with_executable(false),
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE.as_device_memory(),
);
// Writable by default
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE.with_writable(true),
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE,
);
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE
.as_device_memory()
.with_writable(true),
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE.as_device_memory(),
);
// Non-Sharable Device memory
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE
.as_device_memory()
.with_sharable(false),
MemoryRegionAttributes {
tex: 0b010,
c: false,
b: false,
s: false,
ap: 0b011,
xn: true,
},
);
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE
.with_sharable(false)
.as_device_memory(),
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE
.as_device_memory()
.with_sharable(false),
);
// Read-only Non-Sharable Device memory
assert_eq!(
MemoryRegionAttributes::NORMAL_WB_WA_SHARABLE_READ_WRITE
.as_device_memory()
.with_sharable(false)
.with_writable(false),
MemoryRegionAttributes {
tex: 0b010,
c: false,
b: false,
s: false,
ap: 0b111,
xn: true,
},
);
}
}