1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! Count trailing zeros
#![allow(clippy::if_same_then_else)]

const USIZE_BITS: u32 = usize::BITS;

#[allow(clippy::needless_bool)]
const HAS_CTZ: bool = if cfg!(target_arch = "riscv32") || cfg!(target_arch = "riscv64") {
    cfg!(target_feature = "b") || cfg!(target_feature = "experimental-b")
} else if cfg!(target_arch = "arm") {
    // (It's actually CLZ + RBIT)
    // Thumb-2
    cfg!(target_feature = "v6t2")
        // Armv5T and later, only in Arm mode
        || (cfg!(target_feature = "v5te") && !cfg!(target_feature = "thumb-mode"))
} else if cfg!(target_arch = "msp430") {
    false
} else {
    // AArch64: All
    // x86: 80386 and later
    true
};

/// Indicates whether the target includes a 32-bit hardware multiplier.
#[allow(clippy::needless_bool)]
const HAS_MUL: bool = if cfg!(target_arch = "riscv32") || cfg!(target_arch = "riscv64") {
    cfg!(target_feature = "m")
} else if cfg!(target_arch = "msp430") {
    cfg!(target_feature = "hwmult32")
} else {
    // Classic Arm: Armv2 and later
    // Arm-A/R/M: All
    // x86: 8086 and later
    true
};

/// Indicates whether the target includes a 32-bit barrel shifter.
#[allow(clippy::needless_bool)]
const HAS_SHIFTER: bool = if cfg!(target_arch = "msp430") {
    false
} else if cfg!(target_arch = "avr") {
    false
} else {
    true
};

/// Indicates whether an array-based look-up table would be faster than other
/// techniques.
///
/// Some targets would use constant pools anyway. On such targets, bit
/// manipulation tricks relying on an instruction-embedded LUT would actually
/// read from a data bus anyway and therefore would never be faster than an
/// array-based LUT.
///
/// Small microcontrollers usually have a low-latency memory system and a
/// single-issue in-order pipeline. Bit manipulation tricks often require many
/// bit manipulation instructions to move bits into a correct place, which
/// sometimes over-weighs the cost of loading an LUT address and then loading
/// one of its entries. Examples: <https://rust.godbolt.org/z/961Pej> (Armv6-M
/// and Armv7-M), <https://cpp.godbolt.org/z/WPnxon> (MSP430 and AVR)
///
/// There are extreme cases that should be taken into consideration as well.
/// For example, SiFive E31 (used in SiFive Freedom E310) does not have a data
/// cache for XiP from an external SPI flash. Therefore, using an array-based
/// LUT on such systems would lead to a catastrophic performance degradation and
/// must be avoided at any cost.
#[allow(clippy::needless_bool)]
const HAS_FAST_LOAD: bool =
    if cfg!(target_arch = "arm") || cfg!(target_arch = "msp430") || cfg!(target_arch = "avr") {
        true
    } else {
        false
    };

/// Return the number of trailing zeros in `x` (`< 1 << BITS`). Returns
/// `usize::BITS` if `x` is zero.
#[inline]
pub fn trailing_zeros<const BITS: usize>(x: usize) -> u32 {
    if BITS == 0 {
        USIZE_BITS
    } else if BITS == 1 {
        if x == 0 {
            USIZE_BITS
        } else {
            0
        }
    } else if HAS_CTZ {
        x.trailing_zeros()
    } else if BITS == 2 && HAS_FAST_LOAD {
        ctz_array_lut::<4>(x)
    } else if BITS == 3 && HAS_FAST_LOAD {
        ctz_array_lut::<8>(x)
    } else if BITS == 4 && HAS_FAST_LOAD {
        ctz_array_lut::<16>(x)
    } else if BITS <= 2 {
        ctz2(x)
    } else if BITS <= 3 && HAS_SHIFTER {
        ctz3_lut(x)
    } else if BITS <= 4 && HAS_SHIFTER {
        ctz4_lut(x)
    } else if BITS <= 8 && HAS_MUL && HAS_SHIFTER {
        ctz8_debruijn(x)
    } else if BITS > 16 && HAS_MUL && HAS_SHIFTER {
        // Use LLVM's emulation code. At the point of writing, it uses a generic
        // algorithm based on the following one:
        // <http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel>
        //
        // This algorithm requires loading multiple 32-bit-wide constants and
        // shifts by more than one bit and may be very inefficient on some
        // targets. On the other hand, it does not require branching.
        x.trailing_zeros()
    } else if HAS_SHIFTER {
        ctz_bsearch32::<BITS>(x)
    } else {
        ctz_linear::<BITS>(x)
    }
}

#[inline]
fn first_set_bit_mask(x: usize) -> usize {
    x & x.wrapping_neg()
}

/// Implements [`trailing_zeros`] using a [de Bruijn sequence].
/// `x` must be in range `0..0x100`.
///
/// [de Bruijn sequence]: https://en.wikipedia.org/wiki/De_Bruijn_sequence
#[inline]
fn ctz8_debruijn(x: usize) -> u32 {
    debug_assert!(x < 0x100);
    if x == 0 {
        USIZE_BITS
    } else {
        let pat = ((first_set_bit_mask(x) * 0b11101) >> 3) & 0b11100;
        (0b0011_0100_0101_0111_0010_0110_0001_0000 >> pat) & 0b111
    }
}

/// Implements [`trailing_zeros`] using a look-up table.
/// `x` must be in range `0..16`.
#[inline]
fn ctz4_lut(x: usize) -> u32 {
    debug_assert!(x < 16);
    if x == 0 {
        USIZE_BITS
    } else {
        ctz4_lut_nonzero(x)
    }
}

/// Implements [`trailing_zeros`] using a look-up table.
/// `x` must be in range `1..16`.
#[inline]
fn ctz4_lut_nonzero(x: usize) -> u32 {
    debug_assert!(x < 16 && x != 0);
    //  2  3  4  5  6  7  8  9 10 11 12 13 14 15
    (0b01_00_10_00_01_00_11_00_01_00_10_00_01_00 << (x as u32 * 2)) >> 30
}

/// Implements [`trailing_zeros`] using a look-up table.
/// `x` must be in range `0..8`.
#[inline]
fn ctz3_lut(x: usize) -> u32 {
    debug_assert!(x < 8);
    if x == 0 {
        USIZE_BITS
    } else {
        ctz3_lut_nonzero(x)
    }
}

/// Implements [`trailing_zeros`] using a look-up table.
/// `x` must be in range `1..8`.
#[inline]
// This code groups digits irregularly to express a specific meaning
#[expect(clippy::unusual_byte_groupings)]
fn ctz3_lut_nonzero(x: usize) -> u32 {
    debug_assert!(x < 8);
    debug_assert!(x != 0);

    //  2  3  4  5  6  7
    (0b01_00_10_00_01_00_0000_0000_0000_0000 << (x as u32 * 2)) >> 30

    // On RISC-V, the above code generates one fewer instruction compared to
    // the following one because a constant value whose bit[11:0] is zero
    // can be loaded with a single `lu` instruction
    //
    //  (0b00_01_00_10_00_01_00_00 >> (x * 2)) & 0b11
}

/// Implements [`trailing_zeros`].
/// `x` must be in range `0..4`.
#[inline]
fn ctz2(x: usize) -> u32 {
    debug_assert!(x < 4);
    if x == 0 {
        USIZE_BITS
    } else {
        (x & 1 ^ 1) as u32
    }
}

/// Implements [`trailing_zeros`] using an array-based look-up table.
#[inline]
fn ctz_array_lut<const LEN: usize>(x: usize) -> u32 {
    struct Lut<const LEN: usize>;
    trait LutTrait {
        const LUT: &'static [u8];
    }
    impl<const LEN: usize> LutTrait for Lut<LEN> {
        const LUT: &'static [u8] = &{
            let mut array = [0u8; LEN];
            // `[T]::iter_mut` is unusable in `const fn` [ref:const_slice_iter]
            // `core::array::from_fn` is not `const fn` [ref:const_array_from_fn]
            // FIXME: `needless_range_loop` false positive
            // <https://github.com/rust-lang/rust-clippy/issues/10524>
            #[expect(clippy::needless_range_loop)]
            for i in 0..array.len() {
                array[i] = i.trailing_zeros() as u8;
            }
            array
        };
    }

    let lut = Lut::<LEN>::LUT;
    lut[x & (lut.len() - 1)] as u32
}

/// Implements [`trailing_zeros`] using linear search.
#[inline]
fn ctz_linear<const BITS: usize>(mut x: usize) -> u32 {
    for i in 0..BITS as u32 {
        if x & 1 != 0 {
            return i;
        }
        x >>= 1;
    }
    USIZE_BITS
}

/// Implements [`trailing_zeros`] using binary search. The last level
/// is handled by [`ctz4_lut_nonzero`].
///
///`BITS` must be less than or equal to 32.
#[inline]
fn ctz_bsearch32<const BITS: usize>(x: usize) -> u32 {
    debug_assert!(BITS <= 32);
    let mut x = x as u32;

    if x == 0 {
        return USIZE_BITS;
    }

    let mut i = 0;

    if BITS > 16 && (x & 0xffff) == 0 {
        x >>= 16;
        i += 16;
    }

    if BITS > 8 && (x & 0xff) == 0 {
        x >>= 8;
        i += 8;
    }

    if BITS > 4 && (x & 0xf) == 0 {
        x >>= 4;
        i += 4;
        if BITS > 8 {
            x &= 0xf;
        }
    } else if BITS > 4 {
        x &= 0xf;
    }

    if HAS_FAST_LOAD {
        i += ctz_array_lut::<16>(x as usize);
    } else {
        i += ctz4_lut_nonzero(x as usize);
    }

    i
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck_macros::quickcheck;

    macro_rules! gen_test {
        ($mod_name:ident, $func:path, $bits:expr) => {
            mod $mod_name {
                use super::*;

                #[quickcheck]
                fn quickcheck(in_value: u128) {
                    let bits = $bits;
                    let in_value = (in_value % (1u128 << bits)) as usize;
                    let got = $func(in_value);
                    let expected = in_value.trailing_zeros();

                    assert_eq!(
                        expected, got,
                        "func({in_value}) = {got}, expected = {expected}",
                    );
                }

                #[test]
                fn continuous() {
                    let bits = $bits;
                    for i in 0..1024u128 {
                        let in_value = if bits < 10 {
                            if (i >> bits) != 0 {
                                break;
                            }
                            i
                        } else {
                            let low = i & 31;
                            let high = i >> 5;
                            low | high.checked_shl((bits - 5) as u32).unwrap()
                        } as usize;

                        let got = $func(in_value);
                        let expected = in_value.trailing_zeros();

                        assert_eq!(
                            expected, got,
                            "func({in_value}) = {got}, expected = {expected}",
                        );
                    }
                }
            }
        };
    }

    gen_test!(trailing_zeros_0, super::trailing_zeros::<0>, 0);
    gen_test!(trailing_zeros_1, super::trailing_zeros::<1>, 1);
    gen_test!(trailing_zeros_2, super::trailing_zeros::<2>, 2);
    gen_test!(trailing_zeros_3, super::trailing_zeros::<3>, 3);
    gen_test!(
        trailing_zeros_max,
        super::trailing_zeros::<{ super::USIZE_BITS as usize }>,
        super::USIZE_BITS
    );
    gen_test!(ctz8_debruijn, super::ctz8_debruijn, 8);
    gen_test!(ctz4_lut, super::ctz4_lut, 4);
    gen_test!(ctz3_lut, super::ctz3_lut, 3);
    gen_test!(ctz2, super::ctz2, 2);
    gen_test!(ctz_array_lut_1, super::ctz_array_lut::<2>, 1);
    gen_test!(ctz_array_lut_2, super::ctz_array_lut::<4>, 2);
    gen_test!(ctz_array_lut_3, super::ctz_array_lut::<8>, 3);
    gen_test!(ctz_array_lut_4, super::ctz_array_lut::<16>, 4);
    gen_test!(ctz_array_lut_8, super::ctz_array_lut::<256>, 8);
    gen_test!(ctz_linear_0, super::ctz_linear::<0>, 0);
    gen_test!(ctz_linear_1, super::ctz_linear::<1>, 1);
    gen_test!(ctz_linear_2, super::ctz_linear::<2>, 2);
    gen_test!(ctz_linear_3, super::ctz_linear::<3>, 3);
    gen_test!(
        ctz_linear_max,
        super::ctz_linear::<{ super::USIZE_BITS as usize }>,
        super::USIZE_BITS
    );
    gen_test!(ctz_bsearch32_0, super::ctz_bsearch32::<0>, 0);
    gen_test!(ctz_bsearch32_1, super::ctz_bsearch32::<1>, 1);
    gen_test!(ctz_bsearch32_2, super::ctz_bsearch32::<2>, 2);
    gen_test!(ctz_bsearch32_3, super::ctz_bsearch32::<3>, 3);
    gen_test!(ctz_bsearch32_5, super::ctz_bsearch32::<5>, 5);
    gen_test!(ctz_bsearch32_10, super::ctz_bsearch32::<10>, 10);
    gen_test!(ctz_bsearch32_14, super::ctz_bsearch32::<14>, 14);
    gen_test!(ctz_bsearch32_21, super::ctz_bsearch32::<21>, 21);
    gen_test!(ctz_bsearch32_32, super::ctz_bsearch32::<32>, 32);
}