1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
//! Manages timeouts (timed events) and the system clock.
//!
//! # Absolute Time Values
//!
//! There are two kinds of absolute time values used by this system.
//!
//! **A system time** corresponds to the value of [`raw_time`]. This is
//! affected by both of [`raw_set_time`] and [`raw_adjust_time`].
//!
//! On the other hand, **an event time** is only affected by [`raw_adjust_time`].
//! *Time* usually refers to this kind of time unless specified otherwise.
//!
//! # Ticks
//!
//! **A tick** is a point of time that can be used as a reference to represent
//! points of time in proximity. The first tick is [created] at boot time. A new
//! tick is created whenever [`PortToKernel::timer_tick`] is called. It's also
//! created when a new timeout is registered.
//!
//! The system tracks the latest tick that was created, which the system will
//! use to [derive] the latest system or event time by comparing
//! [the `tick_count` associated with the tick] to [the current `tick_count`].
//!
//! [created]: TimeoutGlobals::init
//! [`PortToKernel::timer_tick`]: super::PortToKernel::timer_tick
//! [derive]: system_time
//! [the `tick_count` associated with the tick]: TimeoutGlobals::last_tick_count
//! [the current `tick_count`]: super::PortTimer::tick_count
//!
//! It's important to create ticks at a steady rate. This is because tick counts
//! only have a limited range (`0..=`[`MAX_TICK_COUNT`]), and we can't calculate
//! the correct duration between the current time and the last tick if they are
//! too far away.
//!
//! [`MAX_TICK_COUNT`]: super::PortTimer::MAX_TICK_COUNT
//!
//! # Event Times
//!
//! This line represents the value range of [`Time32`]. A current event time
//! (CET) is a mobile point on the line, constantly moving left to right. When
//! it reaches the end of the line, it goes back to the other end and keeps
//! moving. The arrival times of timeouts are immobile points on the line.
//!
//! ```text
//! ═════╤══════════════════════════════════════════════════════════
//!      │
//!     CET
//! ```
//!
//! There are some *zones* defined around CET (they move along with CET):
//!
//! ```text
//!                                       critical point
//!                                              │     overdue
//! ▃▃▃▃▃▃                                       │▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
//! ═════╤═══════════════════════════════════════╧══════════════════
//! ▓▓▓▓▓│░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓▓▓▓▓▓▓▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▓▓
//!     CET         enqueueable    user headroom   hard headroom
//! ```
//!
//!  - `CET ..= CET + DURATION_MAX`: Newly registered timeouts always belong to
//!    this **enqueueable zone**.
//!
//!  - `CET - USER_HEADROOM ..= CET + DURATION_MAX + USER_HEADROOM`:
//!    The **user headroom zone** surrounds the enqueueable zone. `adjust_time`
//!    may move timeouts to this zone. `adjust_time` does not allow adjustment
//!    that would move timeouts outside of this zone.
//!
//!    Timeouts can also move to this zone because of overdue timer interrupts.
//!
//!  - `CET - USER_HEADROOM - HARD_HEADROOM .. CET - USER_HEADROOM`:
//!    Timeouts can enter the **hard headroom zone** only because of overdue
//!    timer interrupts.
//!
//!  - `CET - USER_HEADROOM - HARD_HEADROOM ..= CET`: Timeouts in this **overdue
//!    zone** are said to be overdue. They will be processed the next time
//!    [`handle_tick`] is called.
//!
//! **Note 1:** `DURATION_MAX` is defined as `Duration::MAX.as_micros()` and is
//! equal to `0x80000000`.
//!
//! **Note 2:** `CET - USER_HEADROOM - HARD_HEADROOM + (Time32::MAX + 1)` is
//! equal to `CET + DURATION_MAX + USER_HEADROOM + 1`. In other words,
//! `HARD_HEADROOM` is defined for the hard headroom zone to fill the remaining
//! area.
//!
//! The earlier endpoint of the hard headroom zone is called **the critical
//! point**. No timeouts shall go past this point. It's an application's
//! responsibility to ensure this does not happen. Event times `x` and `y`
//! can have their chronological order determined by
//! `(x as Time32).wrapping_sub(critical_point).cmp(&(y as Time32).wrapping_sub(critical_point))`.
//!
//! ## Frontier
//!
//! We need to cap the amount of backward time adjustment so that
//! timeouts won't move past the critical point (from left).
//! We use the frontier-based method to enforce this in lieu of checking every
//! outstanding timeout for reasons explained in [`raw_adjust_time`].
//! The frontier (a concept used in the definition of [`raw_adjust_time`])
//! is a mobile point on the line that moves in the same way as the original
//! definition - it represents the most advanced CET the system has ever
//! observed. Timeouts are always created in relative to CET. This means the
//! arrival times of all registered timeouts are bounded by
//! `frontier + DURATION_MAX`, and thus enforcing `frontier - CET <=
//! USER_HEADROOM` is sufficient to achieve our goal here.
//!
//! ```text
//!                                    (CET + DURATION_MAX
//!                                 == frontier + DURATION_MAX)
//!           frontier                        event
//! ▃▃▃▃▃▃▃▃▃▃▃▃▃v                              v        │▃▃▃▃▃▃▃▃▃▃
//! ═════════════╤═══════════════════════════════════════╧══════════
//! ▒▒▒▒▒▒▓▓▓▓▓▓▓│░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓▓▓▓▓▓▓▓▒▒▒▒▒▒▒▒▒▒▒
//!             CET         enqueueable       user headroom
//!
//! After adjust_time(-USER_HEADROOM):
//!
//!                             (CET + DURATION_MAX + USER_HEADROOM
//!                                 == frontier + DURATION_MAX)
//!           frontier                        event
//! ▃▃▃▃▃▃       v                              v│▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
//! ═════╤═══════════════════════════════════════╧══════════════════
//! ▓▓▓▓▓│░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░▓▓▓▓▓▓▓▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▓▓
//!     CET         enqueueable       user headroom
//! ```
//!
//! [`raw_time`]: r3_core::kernel::raw::KernelTime::raw_time
//! [`raw_set_time`]: r3_core::kernel::raw::KernelBase::raw_set_time
//! [`raw_adjust_time`]: r3_core::kernel::raw::KernelAdjustTime::raw_adjust_time
use core::{fmt, marker::PhantomPinned, pin::Pin, ptr::NonNull};
use r3_core::{
    kernel::{AdjustTimeError, TimeError},
    time::{Duration, Time},
    utils::Init,
};

use crate::{
    error::BadParamError,
    klock::{lock_cpu, CpuLockCell, CpuLockGuard, CpuLockTokenRefMut},
    state::expect_task_context,
    task,
    utils::{
        binary_heap::{BinaryHeap, BinaryHeapCtx},
        panicking::abort_on_unwind,
    },
    KernelTraits, UTicks,
};

#[cfg(tests)]
mod tests;

// ---------------------------------------------------------------------------
// Define a singleton token type to allow the mutable access to `Timeout::{at,
// heap_pos}`.

struct TimeoutPropTag;

/// The key that "unlocks" [`TimeoutPropCell`].
type TimeoutPropToken = tokenlock::UnsyncSingletonToken<TimeoutPropTag>;
type TimeoutPropTokenRef<'a> = tokenlock::UnsyncSingletonTokenRef<'a, TimeoutPropTag>;
type TimeoutPropTokenRefMut<'a> = tokenlock::UnsyncSingletonTokenRefMut<'a, TimeoutPropTag>;

/// The keyhole type for [`UnsyncTokenLock`] that can be "unlocked" by
/// [`TimeoutPropToken`].
type TimeoutPropKeyhole = tokenlock::SingletonTokenId<TimeoutPropTag>;

/// Cell type that can be accessed by [`TimeoutPropToken`] (which can be obtained
/// by [`lock_cpu`]).
type TimeoutPropCell<T> = tokenlock::UnsyncTokenLock<T, TimeoutPropKeyhole>;

// ---------------------------------------------------------------------------

/// A kernel-global state for timed event management.
pub(super) struct TimeoutGlobals<Traits, TimeoutHeap: 'static> {
    /// The value of [`PortTimer::tick_count`] on the previous “tick”.
    ///
    /// [`PortTimer::tick_count`]: super::PortTimer::tick_count
    last_tick_count: CpuLockCell<Traits, UTicks>,

    /// The event time on the previous “tick”.
    last_tick_time: CpuLockCell<Traits, Time32>,

    /// The system time on the previous “tick”.
    ///
    /// The current system time is always greater than or equal to
    /// `last_tick_sys_time`.
    #[cfg(feature = "system_time")]
    last_tick_sys_time: CpuLockCell<Traits, Time64>,

    /// The gap between the frontier and the previous tick.
    ///
    /// This value only can be increased by [`adjust_system_and_event_time`].
    /// The upper bound is [`USER_HEADROOM`].
    frontier_gap: CpuLockCell<Traits, Time32>,

    /// The heap (priority queue) containing outstanding timeouts, sorted by
    /// arrival time, and the `TimeoutPropToken` used to access
    /// [`Timeout`]`<Traits>`'s field contents.
    heap_and_prop_token: CpuLockCell<Traits, TimeoutHeapAndPropToken<TimeoutHeap>>,

    /// Flag indicating whether `handle_tick` is in progress or not.
    handle_tick_in_progress: CpuLockCell<Traits, bool>,
}

#[derive(Debug)]
struct TimeoutHeapAndPropToken<TimeoutHeap: 'static> {
    /// The heap (priority queue) containing outstanding timeouts, sorted by
    /// arrival time.
    heap: TimeoutHeap,

    /// The `TimeoutPropToken` used to access [`Timeout`]`<Traits>`'s field
    /// contents.
    prop_token: TimeoutPropToken,
}

impl<Traits, TimeoutHeap: Init + 'static> Init for TimeoutGlobals<Traits, TimeoutHeap> {
    const INIT: Self = Self {
        last_tick_count: Init::INIT,
        last_tick_time: Init::INIT,
        #[cfg(feature = "system_time")]
        last_tick_sys_time: Init::INIT,
        frontier_gap: Init::INIT,
        heap_and_prop_token: CpuLockCell::new(TimeoutHeapAndPropToken {
            heap: Init::INIT,
            // Safety: In each particular `Traits`, this is the only instance of
            //         `TimeoutPropToken`. If there are more than one `Traits` in a
            //         program, the singleton property of `UnsyncSingletonToken`
            //         will be broken, technicually, but that doesn't pose a problem
            //         because we don't even think about using `TimeoutPropToken` of
            //         one `Traits` to unlock another `Traits`'s data structures.
            prop_token: unsafe { TimeoutPropToken::new_unchecked() },
        }),
        handle_tick_in_progress: Init::INIT,
    };
}

impl<Traits: KernelTraits, TimeoutHeap: fmt::Debug> fmt::Debug
    for TimeoutGlobals<Traits, TimeoutHeap>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("TimeoutGlobals")
            .field("last_tick_count", &self.last_tick_count)
            .field("last_tick_time", &self.last_tick_time)
            .field(
                "last_tick_sys_time",
                match () {
                    #[cfg(feature = "system_time")]
                    () => &self.last_tick_sys_time,
                    #[cfg(not(feature = "system_time"))]
                    () => &(),
                },
            )
            .field("frontier_gap", &self.frontier_gap)
            .field("heap_and_prop_token", &self.heap_and_prop_token)
            .field("handle_tick_in_progress", &self.handle_tick_in_progress)
            .finish()
    }
}

// ---------------------------------------------------------------------------

/// An internal utility to access `TimeoutGlobals`.
trait KernelTimeoutGlobalsExt: KernelTraits {
    fn g_timeout() -> &'static TimeoutGlobals<Self, Self::TimeoutHeap>;
}

impl<T: KernelTraits> KernelTimeoutGlobalsExt for T {
    /// Shortcut for `&Self::state().timeout`.
    #[inline(always)]
    fn g_timeout() -> &'static TimeoutGlobals<Self, Self::TimeoutHeap> {
        &Self::state().timeout
    }
}

// Types representing times
// ---------------------------------------------------------------------------

/// Represents an absolute time.
#[cfg(feature = "system_time")]
type Time64 = u64;

/// Represents an absolute time with a reduced range. This is also used to
/// represent a relative time span.
pub(super) type Time32 = u32;

/// A value of type [`Time32`] that can be used to represent a “null” value.
/// [`time32_from_duration`] and [`time32_from_neg_duration`] never returns this
/// value. Do not pass this value to any of this module's methods.
pub(super) const BAD_DURATION32: Time32 = u32::MAX;

#[inline]
#[cfg(feature = "system_time")]
fn time64_from_sys_time(sys_time: Time) -> Time64 {
    sys_time.as_micros()
}

#[inline]
#[cfg(feature = "system_time")]
fn sys_time_from_time64(sys_time: Time64) -> Time {
    Time::from_micros(sys_time)
}

#[inline]
pub(super) const fn time32_from_duration(duration: Duration) -> Result<Time32, BadParamError> {
    // Ok(duration
    //     .as_micros()
    //     .try_into()
    //     .map_err(|_| BadParamError::BadParam)?)

    // `map_err` is not `const fn` [ref:const_result_map]
    if let Ok(x) = duration.as_micros().try_into() {
        Ok(x)
    } else {
        Err(BadParamError::BadParam)
    }
}

/// Convert the negation of `duration` to `Time32`.
#[inline]
pub(super) fn time32_from_neg_duration(duration: Duration) -> Result<Time32, BadParamError> {
    // Unlike `time32_from_duration`, there's no nice way to do this
    let duration = duration.as_micros();
    if duration > 0 {
        Err(BadParamError::BadParam)
    } else {
        Ok(0u32.wrapping_sub(duration as u32))
    }
}

/// Convert `duration` to `Time32`. Negative values are wrapped around.
#[inline]
pub(super) fn wrapping_time32_from_duration(duration: Duration) -> Time32 {
    duration.as_micros() as Time32
}

/// Convert `duration` to `Time64`. Negative values are wrapped around.
#[inline]
#[cfg(feature = "system_time")]
pub(super) fn wrapping_time64_from_duration(duration: Duration) -> Time64 {
    duration.as_micros() as i64 as Time64
}

const USER_HEADROOM: Time32 = 1 << 29;

const HARD_HEADROOM: Time32 = 1 << 30;

/// The extent of how overdue a timed event can be made or how far a timed event
/// can be delayed past `Duration::MAX` by a call to [`raw_adjust_time`].
///
/// [`raw_adjust_time`]: r3_core::kernel::raw::KernelAdjustTime::raw_adjust_time
///
/// The value is `1 << 29` microseconds.
pub const TIME_USER_HEADROOM: Duration = Duration::from_micros(USER_HEADROOM as i32);

/// The extent of how overdue the firing of [`timer_tick`] can be without
/// breaking the kernel timing algorithm.
///
/// [`timer_tick`]: crate::PortToKernel::timer_tick
///
/// The value is `1 << 30` microseconds.
pub const TIME_HARD_HEADROOM: Duration = Duration::from_micros(HARD_HEADROOM as i32);

// Timeouts
// ---------------------------------------------------------------------------

/// A timeout.
///
/// `Timeout` is a `!Unpin` type. Once registered by [`insert_timeout`], the
/// `Timeout` must stay in the same memory location until it's unregistered.
/// Dropping isn't allowed either. `Timeout::drop` can detect the violation of
/// this requirement and cause a panic.
///
/// `Timeout` is unregistered by one of the following ways:
///
///  - On expiration, right before its callback function is called.
///  - [`remove_timeout`] can unregister a `Timeout` at anytime. There is a
///    RAII guard type [`TimeoutGuard`] that does this automatically.
///
pub(super) struct Timeout<Traits: KernelTraits> {
    /// The arrival time of the timeout. This is *an event time*.
    ///
    /// This is wrapped by `TimeoutPropCell` because [`TimeoutHeapCtx`]'s
    /// methods need to access this. [`TimeoutHeapCtx`] doesn't have full access
    /// to `CpuLockTokenRefMut` because it's currently in use to write
    /// `TimeoutHeap`. Otherwise, this would have been [`CpuLockCell`]`<Traits,
    /// _>`.
    at: TimeoutPropCell<u32>,

    /// The position of this timeout in [`TimeoutGlobals::heap`].
    ///
    /// Similarly to [`Self::at`], this is wrapped by `TimeoutPropCell` only
    /// because [`TimeoutHeapCtx`] needs to access this.
    ///
    /// [`HEAP_POS_NONE`] indicates this timeout is not included in the heap.
    heap_pos: TimeoutPropCell<usize>,

    /// Callback function.
    callback: TimeoutFn<Traits>,

    /// Parameter given to the callback function.
    callback_param: usize,

    /// Un-implement `Unpin`.
    _pin: PhantomPinned,

    _phantom: core::marker::PhantomData<Traits>,
}

/// Tiemout callback function.
///
/// The callback function is called with CPU Lock active and an interrupt
/// context when the associated [`Timeout`] expires.
///
/// The callback function may wake up tasks. When it does that, it doesn't have
/// to call `unlock_cpu_and_check_preemption` or `yield_cpu` - it's
/// automatically taken care of.
pub(super) type TimeoutFn<Traits> = fn(usize, CpuLockGuard<Traits>) -> CpuLockGuard<Traits>;

/// Value of [`Timeout::heap_pos`] indicating the timeout is not included in the
/// heap.
const HEAP_POS_NONE: usize = usize::MAX;

impl<Traits: KernelTraits> Init for Timeout<Traits> {
    #[allow(clippy::declare_interior_mutable_const)]
    const INIT: Self = Self {
        at: Init::INIT,
        heap_pos: Init::INIT,
        callback: |_, x| x,
        callback_param: Init::INIT,
        _pin: PhantomPinned,
        _phantom: core::marker::PhantomData,
    };
}

impl<Traits: KernelTraits> Drop for Timeout<Traits> {
    #[inline]
    fn drop(&mut self) {
        abort_on_unwind(|| {
            // TODO: Other threads might be still accessing it; isn't it unsafe
            //       to get `&mut self`? At least this should be okay for the
            //       current compiler thanks to `PhantomPinned` according to
            //       <https://github.com/tokio-rs/tokio/pull/3654>
            if *self.heap_pos.get_mut() != HEAP_POS_NONE {
                // The timeout is still in the heap. Dropping `self` now would
                // cause use-after-free. Since we don't have CPU Lock and we aren't
                // sure if we can get a hold of it, aborting is the only course of
                // action we can take. The owner of `Timeout` is responsible for
                // ensuring this does not happen.
                panic!("timeout is still linked");
            }
        })
    }
}

impl<Traits: KernelTraits> fmt::Debug for Timeout<Traits> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Timeout")
            .field("at", &self.at)
            .field("heap_pos", &self.heap_pos)
            .field("callback", &self.callback)
            .field("callback_param", &self.callback_param)
            .finish()
    }
}

impl<Traits: KernelTraits> Timeout<Traits> {
    /// Construct a `Timeout`.
    ///
    /// The expiration time is set to zero (the origin at boot time, an
    /// unspecified time point otherwise).
    pub(super) const fn new(callback: TimeoutFn<Traits>, callback_param: usize) -> Self {
        Self {
            at: TimeoutPropCell::new(Init::INIT, 0),
            heap_pos: TimeoutPropCell::new(Init::INIT, HEAP_POS_NONE),
            callback,
            callback_param,
            _pin: PhantomPinned,
            _phantom: core::marker::PhantomData,
        }
    }

    /// Get a flag indicating whether the `Timeout` is currently in the heap.
    pub(super) fn is_linked(&self, lock: CpuLockTokenRefMut<'_, Traits>) -> bool {
        let prop_token = &Traits::g_timeout()
            .heap_and_prop_token
            .read(&*lock)
            .prop_token;

        *self.heap_pos.read(prop_token) != HEAP_POS_NONE
    }

    /// Configure the `Timeout` to expire in the specified duration.
    pub(super) fn set_expiration_after(
        &self,
        mut lock: CpuLockTokenRefMut<'_, Traits>,
        duration_time32: Time32,
    ) {
        debug_assert_ne!(duration_time32, BAD_DURATION32);

        let current_time = current_time(lock.borrow_mut());
        let at = current_time.wrapping_add(duration_time32);

        let prop_token = &mut Traits::g_timeout()
            .heap_and_prop_token
            .write(&mut *lock)
            .prop_token;

        *self.at.write(prop_token) = at;
    }

    /// Adjust the `Timeout`'s expiration time.
    ///
    /// Intended to be used by periodic events before re-registering the
    /// `Timeout`.
    pub(super) fn adjust_expiration(
        &self,
        mut lock: CpuLockTokenRefMut<'_, Traits>,
        duration_time32: Time32,
    ) {
        debug_assert_ne!(duration_time32, BAD_DURATION32);

        let prop_token = &mut Traits::g_timeout()
            .heap_and_prop_token
            .write(&mut *lock)
            .prop_token;

        self.at
            .replace_with(prop_token, |x| x.wrapping_add(duration_time32));
    }

    #[inline]
    pub(super) fn saturating_duration_until_timeout(
        &self,
        mut lock: CpuLockTokenRefMut<'_, Traits>,
    ) -> Time32 {
        let current_time = current_time(lock.borrow_mut());

        let prop_token = &Traits::g_timeout()
            .heap_and_prop_token
            .read(&*lock)
            .prop_token;

        saturating_duration_until_timeout(self, current_time, prop_token.borrow())
    }

    /// Get the raw expiration time.
    pub(super) fn at_raw(&self, lock: CpuLockTokenRefMut<'_, Traits>) -> Time32 {
        let prop_token = &Traits::g_timeout()
            .heap_and_prop_token
            .read(&*lock)
            .prop_token;

        *self.at.read(prop_token)
    }

    /// Set the raw expiration time.
    ///
    /// This might be useful for storing arbitrary data in an unlinked `Timeout`.
    pub(super) fn set_at_raw(&self, mut lock: CpuLockTokenRefMut<'_, Traits>, value: Time32) {
        let prop_token = &mut Traits::g_timeout()
            .heap_and_prop_token
            .write(&mut *lock)
            .prop_token;

        *self.at.write(prop_token) = value;
    }

    /// Set the raw expiration time, returning the modified instance of `self`.
    ///
    /// This might be useful for storing arbitrary data in an unlinked `Timeout`.
    pub(super) const fn with_at_raw(mut self, at: Time32) -> Self {
        self.at = TimeoutPropCell::new(Init::INIT, at);
        self
    }

    /// Set the expiration time with a duration since boot, returning the
    /// modified instance of `self`.
    pub(super) const fn with_expiration_at(self, at: Time32) -> Self {
        assert!(at != BAD_DURATION32, "`at` must be a valid duration");
        self.with_at_raw(at)
    }
}

/// A reference to a [`Timeout`].
#[doc(hidden)]
pub struct TimeoutRef<Traits: KernelTraits>(NonNull<Timeout<Traits>>);

// Safety: `Timeout` is `Send + Sync`
unsafe impl<Traits: KernelTraits> Send for TimeoutRef<Traits> {}
unsafe impl<Traits: KernelTraits> Sync for TimeoutRef<Traits> {}

impl<Traits: KernelTraits> Clone for TimeoutRef<Traits> {
    fn clone(&self) -> Self {
        Self(self.0)
    }
}

impl<Traits: KernelTraits> Copy for TimeoutRef<Traits> {}

impl<Traits: KernelTraits> fmt::Debug for TimeoutRef<Traits> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("TimeoutRef").field(&self.0).finish()
    }
}

/// Used when manipulating [`TimeoutGlobals::heap`]. Provides the correct
/// comparator function for [`Timeout`]s. Ensures [`Timeout::heap_pos`] is
/// up-to-date.
struct TimeoutHeapCtx<'a> {
    critical_point: Time32,
    prop_token: TimeoutPropTokenRefMut<'a>,
}

impl<Traits: KernelTraits> BinaryHeapCtx<TimeoutRef<Traits>> for TimeoutHeapCtx<'_> {
    #[inline]
    fn lt(&mut self, x: &TimeoutRef<Traits>, y: &TimeoutRef<Traits>) -> bool {
        // Safety: `x` and `y` are in the heap, so the pointees must be valid
        let (x, y) = unsafe {
            (
                x.0.as_ref().at.read(&*self.prop_token),
                y.0.as_ref().at.read(&*self.prop_token),
            )
        };
        let critical_point = self.critical_point;
        x.wrapping_sub(critical_point) < y.wrapping_sub(critical_point)
    }

    #[inline]
    fn on_move(&mut self, e: &mut TimeoutRef<Traits>, new_index: usize) {
        // Safety: `e` is in the heap, so the pointee must be valid
        unsafe { e.0.as_ref() }
            .heap_pos
            .replace(&mut *self.prop_token, new_index);
    }
}

// Initialization
// ---------------------------------------------------------------------------

impl<Traits: KernelTraits, TimeoutHeap> TimeoutGlobals<Traits, TimeoutHeap> {
    /// Initialize the timekeeping system.
    pub(super) fn init(&self, mut lock: CpuLockTokenRefMut<'_, Traits>) {
        // Mark the first “tick”
        // Safety: CPU Lock active
        self.last_tick_count
            .replace(&mut *lock.borrow_mut(), unsafe { Traits::tick_count() });

        // Schedule the next tick. There are no timeouts registered at the
        // moment, so use `MAX_TIMEOUT`.
        // Safety: CPU Lock active
        unsafe { Traits::pend_tick_after(Traits::MAX_TIMEOUT) };
    }
}

// Global Time Management
// ---------------------------------------------------------------------------

/// Implements [`Kernel::time`].
#[cfg(feature = "system_time")]
pub(super) fn system_time<Traits: KernelTraits>() -> Result<Time, TimeError> {
    expect_task_context::<Traits>()?;
    let mut lock = lock_cpu::<Traits>()?;

    let (duration_since_last_tick, _) = duration_since_last_tick(lock.borrow_mut());
    let last_tick_sys_time = Traits::g_timeout()
        .last_tick_sys_time
        .get(&*lock.borrow_mut());
    let cur_sys_time = last_tick_sys_time.wrapping_add(duration_since_last_tick as Time64);

    // Convert `Time64` to a public type
    Ok(sys_time_from_time64(cur_sys_time))
}

/// Implements [`Kernel::set_time`].
pub(super) fn set_system_time<Traits: KernelTraits>(new_sys_time: Time) -> Result<(), TimeError> {
    expect_task_context::<Traits>()?;

    match () {
        #[cfg(feature = "system_time")]
        () => {
            let mut lock = lock_cpu::<Traits>()?;
            let (duration_since_last_tick, _) = duration_since_last_tick(lock.borrow_mut());

            // Adjust `last_tick_sys_time` so that `system_time` will return the value
            // equal to `new_sys_time`
            let new_last_tick_sys_time =
                time64_from_sys_time(new_sys_time).wrapping_sub(duration_since_last_tick as Time64);

            Traits::g_timeout()
                .last_tick_sys_time
                .replace(&mut *lock.borrow_mut(), new_last_tick_sys_time);
        }

        #[cfg(not(feature = "system_time"))]
        () => {
            // If `system_time` feature is disabled, the system time is not
            // observable, so this function is no-op. It still needs to validate
            // the current context and return an error as needed.
            let _ = new_sys_time; // suppress "unused parameter"
            lock_cpu::<Traits>()?;
        }
    }

    Ok(())
}

/// Implements [`Kernel::adjust_time`].
pub(super) fn adjust_system_and_event_time<Traits: KernelTraits>(
    delta: Duration,
) -> Result<(), AdjustTimeError> {
    let mut lock = lock_cpu::<Traits>()?;
    let g_timeout = Traits::g_timeout();

    // For the `delta.is_negative()` case, we'd like to check if the adjustment
    // would throw the frontier out of the valid range. The frontier is a
    // time-dependent quantity, so first we need to get the latest value of the
    // frontier.
    //
    // `mark_tick` will update `frontier_gap` with the latest value without
    // introducing any application-visible side-effects.
    //
    // This is also useful for the `delta.is_positive()` case because it updates
    // `last_tick_time`.
    mark_tick(lock.borrow_mut());

    if delta.is_negative() {
        let delta_abs = time32_from_neg_duration(delta).unwrap();

        let new_frontier_gap = g_timeout.frontier_gap.get(&*lock) + delta_abs;

        if new_frontier_gap > USER_HEADROOM {
            // The frontier would be too far away
            return Err(AdjustTimeError::BadObjectState);
        }

        g_timeout.frontier_gap.replace(&mut *lock, new_frontier_gap);
    } else if delta.is_positive() {
        let delta_abs = time32_from_duration(delta).unwrap();

        let TimeoutHeapAndPropToken { heap, prop_token } =
            g_timeout.heap_and_prop_token.read(&*lock);

        // Check the top element (representing the earliest timeout) in the heap

        if let Some(&timeout_ref) = heap.get(0) {
            // Safety: `timeout_ref` is in the heap, meaning the pointee is valid
            let timeout = unsafe { timeout_ref.0.as_ref() };

            let current_time = g_timeout.last_tick_time.get(&*lock);

            // How much time do we have before `timeout` enters the hard headroom
            // zone?
            let duration = saturating_duration_before_timeout_exhausting_user_headroom(
                timeout,
                current_time,
                prop_token.borrow(),
            );

            if duration < delta_abs {
                // The timeout would enter the hard headroom zone if we made
                // this adjustment
                return Err(AdjustTimeError::BadObjectState);
            }
        }

        g_timeout
            .frontier_gap
            .replace_with(&mut *lock, |old_value| old_value.saturating_sub(delta_abs));
    } else {
        // Do nothing
        return Ok(());
    }

    // Update the current system time and the current event time
    let delta32 = wrapping_time32_from_duration(delta);
    g_timeout
        .last_tick_time
        .replace_with(&mut *lock, |old_value| old_value.wrapping_add(delta32));

    #[cfg(feature = "system_time")]
    {
        let delta64 = wrapping_time64_from_duration(delta);
        g_timeout
            .last_tick_sys_time
            .replace_with(&mut *lock, |old_value| old_value.wrapping_add(delta64));
    }

    // Schedule the next tick
    let current_time = g_timeout.last_tick_time.get(&*lock);
    pend_next_tick(lock.borrow_mut(), current_time);

    Ok(())
}

/// Calculate the elapsed time since the last tick.
///
/// Returns two values:
///
///  1. The duration in range `0..=Traits::MAX_TICK_COUNT`.
///  2. The value of `Traits::tick_count()` used for calculation.
///
#[inline]
// I didn't mean `Traits::MAX_TICK_COUNT == UTicks::MAX_TICK_COUNT`
#[allow(clippy::suspicious_operation_groupings)]
fn duration_since_last_tick<Traits: KernelTraits>(
    mut lock: CpuLockTokenRefMut<'_, Traits>,
) -> (Time32, Time32) {
    // Safety: CPU Lock active
    let tick_count = unsafe { Traits::tick_count() };

    let last_tick_count = Traits::g_timeout().last_tick_count.get(&*lock.borrow_mut());

    // Guess the current time, taking the wrap-around behavior into account.
    // Basically, we want to find the smallest value of `time`
    // (≥ `last_tick_time`) that satisfies the following equation:
    //
    //     (last_tick_count + (time - last_tick_time)) % (MAX_TICK_COUNT + 1)
    //       == tick_count
    //
    let elapsed = if Traits::MAX_TICK_COUNT == UTicks::MAX || tick_count >= last_tick_count {
        // last_tick_count    tick_count
        // ┌──────┴────────────────┴────────┬───────────┐
        // 0      ╚════════════════╝  MAX_TICK_COUNT    MAX
        //              elapsed
        tick_count.wrapping_sub(last_tick_count)
    } else {
        //   tick_count     last_tick_count
        // ┌──────┴────────────────┴────────┬───────────┐
        // 0 ═════╝                ╚════════           MAX
        //                          elapsed
        // Note: If `Traits::MAX_TICK_COUNT == UTicks::MAX`, this reduces to
        // the first case because we are using wrapping arithmetics.
        tick_count.wrapping_sub(last_tick_count) - (UTicks::MAX - Traits::MAX_TICK_COUNT)
    };

    (elapsed, tick_count)
}

/// Create a tick now.
fn mark_tick<Traits: KernelTraits>(mut lock: CpuLockTokenRefMut<'_, Traits>) {
    let (duration_since_last_tick, tick_count) =
        duration_since_last_tick::<Traits>(lock.borrow_mut());

    let g_timeout = Traits::g_timeout();
    g_timeout.last_tick_count.replace(&mut *lock, tick_count);
    g_timeout
        .last_tick_time
        .replace_with(&mut *lock, |old_value| {
            old_value.wrapping_add(duration_since_last_tick)
        });
    #[cfg(feature = "system_time")]
    g_timeout
        .last_tick_sys_time
        .replace_with(&mut *lock, |old_value| {
            old_value.wrapping_add(duration_since_last_tick as Time64)
        });

    g_timeout
        .frontier_gap
        .replace_with(&mut *lock, |old_value| {
            old_value.saturating_sub(duration_since_last_tick)
        });
}

/// Implements [`PortToKernel::timer_tick`].
///
/// Precondition: CPU Lock inactive, an interrupt context
///
/// [`PortToKernel::timer_tick`]: super::PortToKernel::timer_tick
#[inline]
pub(super) fn handle_tick<Traits: KernelTraits>() {
    // The precondition includes CPU Lock being inactive, so this `unwrap`
    // should succeed
    let mut lock = lock_cpu::<Traits>().unwrap();

    mark_tick(lock.borrow_mut());

    let g_timeout = Traits::g_timeout();
    let current_time = g_timeout.last_tick_time.get(&*lock);
    let critical_point = critical_point(current_time);

    // Set `handle_tick_in_progress`. This will suppress redundant calls to
    // `pend_next_tick` made by timeout handlers.
    g_timeout.handle_tick_in_progress.replace(&mut *lock, true);

    // Process expired timeouts.
    //
    // For each iteration, check the top element (representing the earliest
    // timeout) in the heap. Exit from the loop if the heap is empty.
    while let Some(&timeout_ref) = g_timeout.heap_and_prop_token.read(&*lock).heap.get(0) {
        // Safety: `timeout_ref` is in the heap, meaning the pointee is valid
        let timeout = unsafe { &*timeout_ref.0.as_ptr() };

        let TimeoutHeapAndPropToken { heap, prop_token } =
            g_timeout.heap_and_prop_token.write(&mut *lock);

        // How much time do we have before `timeout` becomes overdue?
        let remaining =
            saturating_duration_until_timeout(timeout, current_time, prop_token.borrow());
        if remaining > 0 {
            break;
        }

        // The timeout has expired. Remove it from the heap.
        let Timeout {
            callback,
            callback_param,
            ..
        } = *timeout;

        debug_assert_eq!(*timeout.heap_pos.read(prop_token), 0);
        timeout.heap_pos.replace(prop_token, HEAP_POS_NONE);

        heap.heap_remove(
            0,
            TimeoutHeapCtx {
                critical_point,
                prop_token: prop_token.borrow_mut(),
            },
        );

        // (Note: `timeout` is considered invalid at this point because it's not
        // in the heap anymore)

        // Call the callback function.
        lock = callback(callback_param, lock);
    }

    g_timeout.handle_tick_in_progress.replace(&mut *lock, false);

    // Schedule the next tick
    pend_next_tick(lock.borrow_mut(), current_time);

    // Callback functions might have woken up some tasks. Check for dispatch and
    // release CPU Lock.
    task::unlock_cpu_and_check_preemption(lock);
}

/// Get the current event time.
fn current_time<Traits: KernelTraits>(mut lock: CpuLockTokenRefMut<'_, Traits>) -> Time32 {
    let (duration_since_last_tick, _) = duration_since_last_tick::<Traits>(lock.borrow_mut());

    let g_timeout = Traits::g_timeout();
    g_timeout
        .last_tick_time
        .get(&*lock)
        .wrapping_add(duration_since_last_tick)
}

/// Schedule the next tick.
fn pend_next_tick<Traits: KernelTraits>(
    lock: CpuLockTokenRefMut<'_, Traits>,
    current_time: Time32,
) {
    let mut delay = Traits::MAX_TIMEOUT;

    let TimeoutHeapAndPropToken { heap, prop_token } =
        Traits::g_timeout().heap_and_prop_token.read(&*lock);

    // Check the top element (representing the earliest timeout) in the heap
    if let Some(&timeout_ref) = heap.get(0) {
        // Safety: `timeout_ref` is in the heap, meaning the pointee is valid
        let timeout = unsafe { timeout_ref.0.as_ref() };

        // How much time do we have before `timeout` becomes overdue?
        delay = delay.min(saturating_duration_until_timeout(
            timeout,
            current_time,
            prop_token.borrow(),
        ));
    }

    // Safety: CPU Lock active
    unsafe {
        if delay == 0 {
            Traits::pend_tick();
        } else {
            Traits::pend_tick_after(delay);
        }
    }
}

// Timeout Management
// ---------------------------------------------------------------------------

/// Find the critical point based on the current event time.
#[inline]
fn critical_point(current_time: Time32) -> Time32 {
    current_time.wrapping_sub(HARD_HEADROOM + USER_HEADROOM)
}

/// Calculate the duration until the specified timeout is reached. Returns `0`
/// if the timeout is already overdue.
fn saturating_duration_until_timeout<Traits: KernelTraits>(
    timeout: &Timeout<Traits>,
    current_time: Time32,
    prop_token: TimeoutPropTokenRef<'_>,
) -> Time32 {
    let critical_point = critical_point(current_time);

    let duration_until_violating_critical_point =
        timeout.at.read(&*prop_token).wrapping_sub(critical_point);

    duration_until_violating_critical_point.saturating_sub(HARD_HEADROOM + USER_HEADROOM)
}

/// Calculate the duration before the specified timeout surpasses the user
/// headroom zone (and enters the hard headroom zone).
fn saturating_duration_before_timeout_exhausting_user_headroom<Traits: KernelTraits>(
    timeout: &Timeout<Traits>,
    current_time: Time32,
    prop_token: TimeoutPropTokenRef<'_>,
) -> Time32 {
    let critical_point = critical_point(current_time);

    let duration_until_violating_critical_point =
        timeout.at.get(&*prop_token).wrapping_sub(critical_point);

    duration_until_violating_critical_point.saturating_sub(HARD_HEADROOM)
}

/// Register the specified timeout.
pub(super) fn insert_timeout<Traits: KernelTraits>(
    mut lock: CpuLockTokenRefMut<'_, Traits>,
    timeout: Pin<&Timeout<Traits>>,
) {
    // This check is important for memory safety. For each `Timeout`, there can
    // be only one heap entry pointing to that `Timeout`. `heap_pos` indicates
    // whether there's a corresponding heap entry or not. If we let two entries
    // reside in the heap, when we remove the first one, we would falsely flag
    // the `Timeout` as "not in the heap". If we drop the `Timeout` in this
    // state, The second entry would be still referencing the no-longer existent
    // `Timeout`.
    let prop_token = &Traits::g_timeout()
        .heap_and_prop_token
        .read(&*lock)
        .prop_token;
    assert_eq!(
        *timeout.heap_pos.read(prop_token),
        HEAP_POS_NONE,
        "timeout is already registered",
    );

    let current_time = current_time(lock.borrow_mut());
    let critical_point = critical_point(current_time);

    // Insert a reference to `timeout` into the heap
    //
    // `Timeout` is `!Unpin` and `Timeout::drop` ensures it's not dropped while
    // it's still in the heap, so `*timeout` will never be leaked¹ while being
    // referenced by the heap. Therefore, it's safe to insert a reference
    // to `*timeout` into the heap.
    //
    //  ¹ Rust jargon meaning destroying an object without running its
    //    destructor.
    let TimeoutHeapAndPropToken { heap, prop_token } =
        Traits::g_timeout().heap_and_prop_token.write(&mut *lock);

    let pos = heap.heap_push(
        TimeoutRef((&*timeout).into()),
        TimeoutHeapCtx {
            critical_point,
            prop_token: prop_token.borrow_mut(),
        },
    );

    // `TimeoutHeapCtx:on_move` should have assigned `heap_pos`
    debug_assert_eq!(*timeout.heap_pos.read(prop_token), pos);

    if !Traits::g_timeout().handle_tick_in_progress.get(&*lock) {
        // (Re-)schedule the next tick
        pend_next_tick(lock, current_time);
    }
}

/// Unregister the specified `Timeout`. Does nothing if it's not registered.
#[inline]
pub(super) fn remove_timeout<Traits: KernelTraits>(
    mut lock: CpuLockTokenRefMut<'_, Traits>,
    timeout: &Timeout<Traits>,
) {
    remove_timeout_inner(lock.borrow_mut(), timeout);

    let prop_token = &mut Traits::g_timeout()
        .heap_and_prop_token
        .write(&mut *lock)
        .prop_token;

    // Reset `heap_pos` here so that the compiler can eliminate the check in
    // `Timeout::drop`. See the following example:
    //
    //     // `remove_timeout` is marked as `#[inline]`, so the compiler can
    //     // figure out that `heap_pos` is set to `HEAP_POS_NONE` by this call
    //     remove_timeout(lock, &timeout);
    //
    //     // `Timeout::drop` checks `heap_pos` and panics if `heap_pos` is
    //     // not `HEAP_POS_NONE`. The compiler will likely eliminate this
    //     // check.
    //     drop(timeout);
    //
    timeout.heap_pos.replace(prop_token, HEAP_POS_NONE);
}

fn remove_timeout_inner<Traits: KernelTraits>(
    mut lock: CpuLockTokenRefMut<'_, Traits>,
    timeout: &Timeout<Traits>,
) {
    let current_time = current_time(lock.borrow_mut());
    let critical_point = critical_point(current_time);

    // Remove `timeout` from the heap
    //
    // If `heap_pos == HEAP_POS_NONE`, we are supposed to do nothing.
    // `HEAP_POS_NONE` is a huge value, so `heap_remove` will inevitably reject
    // such a huge value by bounds check. This way, we can check both for bounds
    // and `HEAP_POS_NONE` in one fell swoop.
    let TimeoutHeapAndPropToken { heap, prop_token } =
        Traits::g_timeout().heap_and_prop_token.write(&mut *lock);

    let heap_pos = *timeout.heap_pos.read(prop_token);

    let timeout_ref = heap.heap_remove(
        heap_pos,
        TimeoutHeapCtx {
            critical_point,
            prop_token: prop_token.borrow_mut(),
        },
    );

    if timeout_ref.is_none() {
        // The cause of failure must be `timeout` not being registered in the
        // first place. (Bounds check failure would be clearly because of
        // our programming error.)
        debug_assert_eq!(heap_pos, HEAP_POS_NONE);
        return;
    }

    // The removed element should have pointed to `timeout`
    debug_assert_eq!(
        timeout_ref.unwrap().0.as_ptr() as *const _,
        timeout as *const _
    );

    if !Traits::g_timeout().handle_tick_in_progress.get(&*lock) {
        // (Re-)schedule the next tick
        pend_next_tick(lock, current_time);
    }
}

/// RAII guard that automatically unregisters `Timeout` when dropped.
pub(super) struct TimeoutGuard<'a, 'b, Traits: KernelTraits> {
    pub(super) timeout: Pin<&'a Timeout<Traits>>,
    pub(super) lock: CpuLockTokenRefMut<'b, Traits>,
}

impl<'a, 'b, Traits: KernelTraits> Drop for TimeoutGuard<'a, 'b, Traits> {
    #[inline]
    fn drop(&mut self) {
        remove_timeout(self.lock.borrow_mut(), &self.timeout);
    }
}