1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//! Task ready queue implementation (internal use only).
//!
//! **This module is exempt from the API stability guarantee.**
use crate::{
    klock::{CpuLockCell, CpuLockTokenRefMut},
    task::TaskCb,
    utils::{
        intrusive_list::{Ident, ListAccessorCell, Static, StaticLink, StaticListHead},
        Init, PrioBitmap,
    },
    KernelCfg1, KernelTraits, PortThreading,
};
use core::{fmt, ops::RangeTo};
use num_traits::ToPrimitive;

/// Represents a task ready queue, which tracks a list of Ready tasks, sorted by
/// effective priority order.
///
/// This trait is not intended to be implemented on custom types.
pub trait Queue<Traits>: Send + Sync + fmt::Debug + Init + 'static + private::Sealed {
    type PerTaskData: Send + Sync + fmt::Debug + Init + 'static;

    /// Return a flag indicating whether there's a task in Ready state whose
    /// priority is in the specified range.
    fn has_ready_task_in_priority_range(&self, ctx: Ctx<'_, Traits>, range: RangeTo<usize>) -> bool
    where
        Traits: KernelTraits;

    /// Insert the specified task `task_cb` to the ready queue.
    ///
    /// `task_cb` will be inserted as close to the back as possible without
    /// violating the priority ordering. I.e., if there are one or more tasks
    /// having effective priorities identical to that of `task_cb`, `task_cb`
    /// will be inserted after such tasks.
    ///
    /// # Safety
    ///
    /// This method will cause an undefined behavior if `task_cb` is already
    /// included in the queue.
    unsafe fn push_back_task(&self, ctx: Ctx<'_, Traits>, task_cb: &'static TaskCb<Traits>)
    where
        Traits: KernelTraits;

    /// Choose the next task to schedule based on `prev_task_priority`, the
    /// priority of the current task (more precisely, the task that would run
    /// after the ongoing scheduling decision if preemption was not requested by
    /// this decision). If there's no such current task, `prev_task_priority`
    /// should be `usize::MAX`, in which case this method will return
    /// `SwitchTo(_)`.
    ///
    /// If this method returns `SwitchTo(Some(task))`, `task` is removed from
    /// the queue.
    ///
    /// This method performs the following abstract steps:
    ///
    ///  1. If `prev_task_priority` does not equal to `usize::MAX`, insert
    ///     an imaginary task with that effective priority into the ready queue
    ///     as close to the front as possible without violating the priority
    ///     ordering. This imaginary task only exists during the duration of
    ///     the current method call.
    ///
    ///  2. If the ready queue is empty, return `SwitchTo(None)`.
    ///
    ///  3. Pop a task from the front of the ready queue.
    ///
    ///  4. If the popped task `t` is the imaginary task inserted in step 1,
    ///     return `Keep`. Otherwise, return `SwitchTo(t)`.
    ///
    /// | Has current task? | Is it blocked? | `prev_task_priority` | Has next task? |        Returns      |
    /// | ----------------- | -------------- | -------------------- | -------------- | ------------------- |
    /// |        no         |       no       |   `== usize::MAX`    |       no       |  `SwitchTo(None)`   |
    /// |        no         |       no       |   `== usize::MAX`    |       yes      | `SwitchTo(Some(_))` |
    /// |        yes        |       yes      |   `== usize::MAX`    |       no       |  `SwitchTo(None)`   |
    /// |        yes        |       yes      |   `== usize::MAX`    |       yes      | `SwitchTo(Some(_))` |
    /// |        yes        |       no       |   `!= usize::MAX`    |       no       |       `Keep`        |
    /// |        yes        |       no       |   `!= usize::MAX`    |       yes      | `SwitchTo(Some(_))` |
    ///
    ///  - *Has current task?* and *Is it blocked?* columns are contexts in
    ///    which this method is called but are not directly observable by this
    ///    method's implementation.
    ///
    ///  - `prev_task_priority` is the value passed to this method.
    ///
    ///  - *Has next task?* column is a possible outcome of the scheduling
    ///    decision made by this method.
    ///
    ///  - *Returns* column indicates what this method is supposed to return in
    ///    the respective cases.
    ///
    fn pop_front_task(
        &self,
        ctx: Ctx<'_, Traits>,
        prev_task_priority: usize,
    ) -> ScheduleDecision<&'static TaskCb<Traits>>
    where
        Traits: KernelTraits;

    /// Reposition the specified task within the ready queue after a change in
    /// its effective priority from `old_effective_priority` to
    /// `effective_priority`.
    ///
    /// `task_cb` will be re-inserted as close to the back as possible without
    /// violating the priority ordering. I.e., if there are one or more tasks
    /// having effective priorities identical to that of `task_cb`, `task_cb`
    /// will be re-inserted after such tasks.
    ///
    /// The caller should ensure `old_effective_priority` is not identical to
    /// `effective_priority`.
    ///
    /// # Safety
    ///
    /// This method will cause an undefined behavior if `task_cb` is not
    /// included in the queue or was lastly inserted to the queue with an
    /// effective priority that is not identical to `old_effective_priority`.
    unsafe fn reorder_task(
        &self,
        ctx: Ctx<'_, Traits>,
        task_cb: &'static TaskCb<Traits>,
        effective_priority: usize,
        old_effective_priority: usize,
    ) where
        Traits: KernelTraits;
}

/// Implements [the sealed trait pattern], which prevents [`Queue`] against
/// downstream implementations.
///
/// [the sealed trait pattern]: https://rust-lang.github.io/api-guidelines/future-proofing.html
mod private {
    pub trait Sealed {}
}

/// The result type of [`Queue::pop_front_task`].
pub enum ScheduleDecision<T> {
    /// The kernel should not perform context switch and should continue to
    /// schedule the current task.
    Keep,
    /// The kernel should perform context switch to the specified task.
    SwitchTo(Option<T>),
}

/// The context type for [`Queue`].
pub struct Ctx<'a, Traits: KernelTraits> {
    pub(super) lock: CpuLockTokenRefMut<'a, Traits>,
}

impl<'a, Traits: KernelTraits> From<CpuLockTokenRefMut<'a, Traits>> for Ctx<'a, Traits> {
    #[inline]
    fn from(lock: CpuLockTokenRefMut<'a, Traits>) -> Self {
        Self { lock }
    }
}

/// The ready queue implementation that uses a set of queues segregated by the
/// priorities of contained tasks.
pub struct BitmapQueue<
    Traits: PortThreading,
    PortTaskState: 'static,
    TaskPriority: 'static,
    Bitmap: 'static,
    const LEN: usize,
> {
    /// The set of segregated task ready queues, in which each queue stores
    /// the list of Ready tasks at the corresponding priority.
    ///
    /// Invariant: `queues[i].first.is_some() == bitmap.get(i)`
    queues: [CpuLockCell<
        Traits,
        StaticListHead<BitmapQueueTaskCb<Traits, PortTaskState, TaskPriority>>,
    >; LEN],

    /// The task ready bitmap, in which each bit indicates whether the
    /// segregated queue corresponding to that bit contains a task or not.
    bitmap: CpuLockCell<Traits, Bitmap>,
}

impl<
        Traits: PortThreading,
        PortTaskState: 'static,
        TaskPriority: 'static,
        Bitmap: 'static + Init,
        const LEN: usize,
    > Init for BitmapQueue<Traits, PortTaskState, TaskPriority, Bitmap, LEN>
{
    const INIT: Self = Self {
        queues: Init::INIT,
        bitmap: Init::INIT,
    };
}

type BitmapQueueTaskCb<Traits, PortTaskState, TaskPriority> = TaskCb<
    Traits,
    PortTaskState,
    TaskPriority,
    BitmapQueuePerTaskData<Traits, PortTaskState, TaskPriority>,
>;

pub struct BitmapQueuePerTaskData<
    Traits: PortThreading,
    PortTaskState: 'static,
    TaskPriority: 'static,
> {
    link: CpuLockCell<
        Traits,
        Option<StaticLink<BitmapQueueTaskCb<Traits, PortTaskState, TaskPriority>>>,
    >,
}

impl<Traits: PortThreading, PortTaskState: 'static, TaskPriority: 'static> Init
    for BitmapQueuePerTaskData<Traits, PortTaskState, TaskPriority>
{
    #[allow(clippy::declare_interior_mutable_const)]
    const INIT: Self = Self { link: Init::INIT };
}

impl<Traits: KernelTraits, PortTaskState: 'static, TaskPriority: 'static> fmt::Debug
    for BitmapQueuePerTaskData<Traits, PortTaskState, TaskPriority>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("BitmapQueuePerTaskData")
            .field("link", &self.link)
            .finish()
    }
}

/// Get a `ListAccessorCell` used to access a task ready queue.
macro_rules! list_accessor {
    ($head:expr, $key:expr) => {{
        let accessor = ListAccessorCell::new(
            $head,
            &Static,
            |task_cb| &task_cb.ready_queue_data.link,
            $key,
        );

        // Safety: This linked list is structurally sound.
        #[allow(unused_unsafe)]
        unsafe {
            accessor.unchecked()
        }
    }};
}

impl<Traits: KernelTraits, Bitmap: PrioBitmap, const LEN: usize> Queue<Traits>
    for BitmapQueue<
        Traits,
        <Traits as PortThreading>::PortTaskState,
        <Traits as KernelCfg1>::TaskPriority,
        Bitmap,
        LEN,
    >
where
    Traits: KernelCfg1<TaskReadyQueue = Self>,
{
    type PerTaskData = BitmapQueuePerTaskData<
        Traits,
        <Traits as PortThreading>::PortTaskState,
        <Traits as KernelCfg1>::TaskPriority,
    >;

    #[inline]
    fn has_ready_task_in_priority_range(
        &self,
        Ctx { lock }: Ctx<'_, Traits>,
        range: RangeTo<usize>,
    ) -> bool {
        let highest_task_priority = self.bitmap.read(&*lock).find_set().unwrap_or(usize::MAX);
        highest_task_priority < range.end
    }

    #[inline]
    unsafe fn push_back_task(
        &self,
        Ctx { mut lock }: Ctx<'_, Traits>,
        task_cb: &'static TaskCb<Traits>,
    ) {
        // Insert the task to a ready queue
        //
        // Safety: `task_cb` is unlinked, so it shouldn't return
        //         `InsertError::AlreadyLinked`.
        let pri = task_cb.effective_priority.read(&*lock).to_usize().unwrap();
        unsafe {
            list_accessor!(&self.queues[pri], lock.borrow_mut())
                .push_back(Ident(task_cb))
                .unwrap_unchecked();
        }

        // Update `bitmap` accordingly
        self.bitmap.write(&mut *lock).set(pri);
    }

    #[inline]
    fn pop_front_task(
        &self,
        Ctx { mut lock }: Ctx<'_, Traits>,
        prev_task_priority: usize,
    ) -> ScheduleDecision<&'static TaskCb<Traits>> {
        // The priority of the next task to run
        //
        // Consider the case where `prev_task_priority == usize::MAX`, i.e.,
        // there is no current task.
        //
        // The default value (the value given to `unwrap_or`) is
        // `usize::MAX - 1` for the following reason:
        // If there's no task to schedule at the moment, this method is supposed
        // to return `SwitchTo(None)`.  If the default value was `usize::MAX`,
        // in this case, `prev_task_priority` would be equal to
        // `next_task_priority` and this method would return `Keep`. We make
        // sure this does not happen by making the default value lower.
        //
        // `usize::MAX - 1` never collides with an actual task priority because
        // of the priority range restriction imposed by `CfgBuilder::
        // num_task_priority_levels`.
        let next_task_priority = self
            .bitmap
            .read(&*lock)
            .find_set()
            .unwrap_or(usize::MAX - 1);

        if prev_task_priority <= next_task_priority {
            // Return if there's no task willing to take over the current one,
            // and the current one can still run.
            ScheduleDecision::Keep
        } else if next_task_priority < LEN {
            // Take the first task from the ready queue corresponding to
            // `next_task_priority`
            let mut accessor = list_accessor!(&self.queues[next_task_priority], lock.borrow_mut());
            let Ok(task) = accessor.pop_front();
            // There must be at least one element, because the bitmap
            // indicated so
            let task = task.unwrap().0;

            // Update `bitmap` accordingly
            if accessor.is_empty() {
                self.bitmap.write(&mut *lock).clear(next_task_priority);
            }

            ScheduleDecision::SwitchTo(Some(task))
        } else {
            ScheduleDecision::SwitchTo(None)
        }
    }

    #[inline]
    unsafe fn reorder_task(
        &self,
        Ctx { mut lock }: Ctx<'_, Traits>,
        task_cb: &'static TaskCb<Traits>,
        effective_priority: usize,
        old_effective_priority: usize,
    ) {
        debug_assert_ne!(effective_priority, old_effective_priority);

        // Move the task between ready queues
        let old_pri_empty = {
            let mut accessor =
                list_accessor!(&self.queues[old_effective_priority], lock.borrow_mut());
            // Safety:  `task_cb` is definitely linked to this list, so `remove`
            //          shouldn't return `ItemError::NotLinked`.
            unsafe { accessor.remove(Ident(task_cb)).unwrap_unchecked() };
            accessor.is_empty()
        };

        // Safety: `task_cb` is not affiliated to any of `self.queues[..]` at
        //         this point, so `push_back` shouldn't return `AlreadyLinked`.
        unsafe {
            list_accessor!(&self.queues[effective_priority], lock.borrow_mut())
                .push_back(Ident(task_cb))
                .unwrap_unchecked();
        }

        // Update `bitmap` accordingly
        // (This code assumes `effective_priority != old_effective_priority`.)
        let task_ready_bitmap = self.bitmap.write(&mut *lock);
        task_ready_bitmap.set(effective_priority);
        if old_pri_empty {
            task_ready_bitmap.clear(old_effective_priority);
        }
    }
}

impl<
        Traits: KernelTraits,
        PortTaskState: 'static,
        TaskPriority: 'static,
        Bitmap: 'static + fmt::Debug,
        const LEN: usize,
    > fmt::Debug for BitmapQueue<Traits, PortTaskState, TaskPriority, Bitmap, LEN>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if let Ok(lock) = super::klock::lock_cpu() {
            let lock = core::cell::RefCell::new(lock);
            let lock = &lock; // capture-by-reference in the closure below

            struct DebugFn<F>(F);
            impl<F: Fn(&mut fmt::Formatter) -> fmt::Result> fmt::Debug for DebugFn<F> {
                fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                    (self.0)(f)
                }
            }

            f.write_str("BitmapQueue ")?;
            f.debug_map()
                .entries(self.queues.iter().enumerate().map(|(i, head_cell)| {
                    (
                        // key = priority
                        i,
                        // value = list of tasks
                        DebugFn(move |f: &mut fmt::Formatter| {
                            let mut lock = lock.borrow_mut();
                            let accessor = list_accessor!(head_cell, lock.borrow_mut());
                            f.debug_list()
                                .entries(accessor.iter().map(|x| x.unwrap().0))
                                .finish()
                        }),
                    )
                }))
                .finish()
        } else {
            f.write_str("BitmapQueue { < locked > }")
        }
    }
}

impl<Traits: KernelTraits, Bitmap: PrioBitmap, const LEN: usize> private::Sealed
    for BitmapQueue<
        Traits,
        <Traits as PortThreading>::PortTaskState,
        <Traits as KernelCfg1>::TaskPriority,
        Bitmap,
        LEN,
    >
where
    Traits: KernelCfg1<TaskReadyQueue = Self>,
{
}