1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
use core::{alloc::Layout, marker::Destruct, ops, ptr::NonNull};

use super::{AllocError, Allocator, ConstAllocator};

/// `Vec` that can only be used in a constant context.
#[doc(hidden)]
pub struct ComptimeVec<T: ~const Destruct> {
    ptr: NonNull<T>,
    len: usize,
    capacity: usize,
    allocator: ConstAllocator,
}

impl<T: ~const Clone + ~const Destruct> const Clone for ComptimeVec<T> {
    fn clone(&self) -> Self {
        // FIXME: Work-around for a mysterious error saying "the trait bound
        // `for<'r> fn(&'r T) -> T {<T as Clone>::clone}: ~const FnMut<(&T,)>`
        // is not satisfied" when it's simply written as `self.map(T::clone)`
        #[inline]
        const fn clone_shim<T: ~const Clone>(x: &T) -> T {
            x.clone()
        }
        self.map(clone_shim)
    }
}

impl<T: ~const Destruct> const Drop for ComptimeVec<T> {
    fn drop(&mut self) {
        if core::mem::needs_drop::<T>() {
            while self.pop().is_some() {}
        }

        // Safety: The referent is a valid heap allocation from `self.allocator`,
        // and `self` logically owns it
        unsafe {
            self.allocator
                .deallocate(self.ptr.cast(), layout_array::<T>(self.capacity));
        }
    }
}

impl<T: ~const Destruct> ComptimeVec<T> {
    pub const fn new_in(allocator: ConstAllocator) -> Self {
        Self::with_capacity_in(0, allocator)
    }

    pub const fn with_capacity_in(capacity: usize, allocator: ConstAllocator) -> Self {
        Self {
            ptr: unwrap_alloc_error(allocator.allocate(layout_array::<T>(capacity))).cast(),
            len: 0,
            capacity,
            allocator,
        }
    }

    pub const fn repeat_in(allocator: ConstAllocator, x: T, n: usize) -> Self
    where
        T: Copy,
    {
        let mut this = Self::with_capacity_in(n, allocator);
        while this.len() < n {
            this.push(x);
        }
        this
    }

    pub const fn allocator(&self) -> &ConstAllocator {
        &self.allocator
    }

    pub const fn push(&mut self, x: T) {
        unsafe {
            self.reserve(1);
            // Safety: `self.len` is in-bounds
            self.ptr.as_ptr().wrapping_add(self.len).write(x)
        }
        self.len += 1;
    }

    pub const fn pop(&mut self) -> Option<T> {
        unsafe {
            let Some(i) = self.len.checked_sub(1) else { return None };
            self.len = i;
            // Safety: The `i`-th element was present, but since `len <= i`
            // now, we can remove it
            Some(self.ptr.as_ptr().wrapping_add(i).read())
        }
    }

    const fn reserve(&mut self, additional: usize) {
        // There's already an enough room?
        if self.capacity - self.len >= additional {
            return;
        }

        let mut new_cap = self.capacity.checked_add(2).expect("capacity overflow");
        while new_cap - self.len < additional {
            new_cap = new_cap.checked_mul(2).expect("capacity overflow");
        }

        unsafe {
            self.ptr = unwrap_alloc_error(self.allocator.grow(
                self.ptr.cast(),
                layout_array::<T>(self.capacity),
                layout_array::<T>(new_cap),
            ))
            .cast();
            self.capacity = new_cap;
        }
    }

    /// Return a `ComptimeVec` of the same `len` as `self` with function `f`
    /// applied to each element in order.
    pub const fn map<F: ~const FnMut(&T) -> U + ~const Destruct, U: ~const Destruct>(
        &self,
        mut f: F,
    ) -> ComptimeVec<U> {
        let mut out = ComptimeVec::with_capacity_in(self.len, self.allocator.clone());
        let mut i = 0;
        while i < self.len() {
            out.push(f(&self[i]));
            i += 1;
        }
        out
    }

    /// Remove all elements.
    pub const fn clear(&mut self)
    where
        T: ~const Destruct,
    {
        if core::mem::needs_drop::<T>() {
            while self.pop().is_some() {}
        } else {
            self.len = 0;
        }
    }

    /// Borrow the storage as a slice.
    #[inline]
    pub const fn as_slice(&self) -> &[T] {
        unsafe { core::slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
    }

    /// Borrow the storage as a slice.
    #[inline]
    pub const fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe { core::slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
    }

    pub const fn to_array<const LEN: usize>(&self) -> [T; LEN]
    where
        T: Copy,
    {
        // `assert!` is used here due to [ref:const_assert_eq]
        assert!(self.len() == LEN);

        // Safety: The memory layout of `[MaybeUninit<T>; LEN]` is identical to
        // `[T; LEN]`. We initialized all elements in `storage[0..LEN]`, so it's
        // safe to reinterpret that range as `[T; LEN]`.
        unsafe { *self.ptr.as_ptr().cast() }
    }
}

impl<T: ~const Destruct> const ops::Deref for ComptimeVec<T> {
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<T: ~const Destruct> const ops::DerefMut for ComptimeVec<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

// Slices aren't iterable in `const fn` [ref:const_slice_iter]
// Closures are unusable in `const fn` [ref:const_closures]
/// An implementation of `$vec.iter().position(|$item| $predicate)` that is
/// compatible with a const context.
#[allow(unused_macros)]
macro_rules! vec_position {
    ($vec:expr, |$item:ident| $predicate:expr) => {{
        let mut i = 0;
        loop {
            if i >= $vec.len() {
                break None;
            }
            let $item = &$vec[i];
            if $predicate {
                break Some(i);
            }
            i += 1;
        }
    }};
}

/// Unwrap `Result<T, AllocError>`.
const fn unwrap_alloc_error<T: ~const Destruct>(x: Result<T, AllocError>) -> T {
    match x {
        Ok(x) => x,
        Err(AllocError) => panic!("compile-time heap allocation failed"),
    }
}

/// Calculate the `Layout` for `[T; len]`.
const fn layout_array<T>(len: usize) -> Layout {
    let singular = Layout::new::<T>();
    let Some(size) = singular.size().checked_mul(len) else { panic!("size overflow") };
    let Ok(layout) = Layout::from_size_align(size, singular.align()) else { unreachable!() };
    layout
}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::TestResult;
    use quickcheck_macros::quickcheck;

    #[test]
    fn as_slice() {
        #[allow(dead_code)] // [ref:unnamed_const_dead_code]
        const fn array(allocator: &ConstAllocator) {
            let mut x = ComptimeVec::new_in(allocator.clone());
            x.push(1);
            x.push(2);
            x.push(3);
            x.push(4);
            // `assert!` is used here due to [ref:const_assert_eq]
            // `matches!` is used here due to [ref:option_const_partial_eq]
            assert!(matches!(x.pop(), Some(4)));
            let slice = x.as_slice();
            // `assert!` is used here due to [ref:const_assert_eq]
            // `matches!` is used here due to [ref:slice_const_partial_eq]
            assert!(matches!(slice, [1, 2, 3]));
        }
        const _: () = ConstAllocator::with(array);
    }

    #[test]
    fn map() {
        const fn array(allocator: &ConstAllocator) -> [i32; 3] {
            let mut x = ComptimeVec::new_in(allocator.clone());
            x.push(1);
            x.push(2);
            x.push(3);
            // Closures don't implement `const Fn` [ref:const_closures]
            const fn transform(x: &i32) -> i32 {
                *x + 1
            }
            let y = x.map(transform);
            y.to_array()
        }
        const OUT: [i32; 3] = ConstAllocator::with(array);
        assert_eq!(OUT, [2, 3, 4]);
    }

    #[test]
    fn to_array() {
        const fn array(allocator: &ConstAllocator) -> [u32; 3] {
            let mut v = ComptimeVec::new_in(allocator.clone());
            v.push(1);
            v.push(2);
            v.push(3);
            v.to_array()
        }
        const OUT: [u32; 3] = ConstAllocator::with(array);
        assert_eq!(OUT, [1, 2, 3]);
    }

    #[test]
    fn get_mut() {
        const fn val(allocator: &ConstAllocator) -> u32 {
            let mut v = ComptimeVec::new_in(allocator.clone());
            v.push(1);
            v.push(2);
            v.push(3);
            v[1] += 2;
            v[1]
        }
        const OUT: u32 = ConstAllocator::with(val);
        assert_eq!(OUT, 4);
    }

    #[test]
    fn const_vec_position() {
        const fn pos(allocator: &ConstAllocator) -> [Option<usize>; 2] {
            let mut v = ComptimeVec::new_in(allocator.clone());
            v.push(42);
            v.push(43);
            v.push(44);
            [
                vec_position!(v, |i| *i == 43),
                vec_position!(v, |i| *i == 50),
            ]
        }
        const OUT: [Option<usize>; 2] = ConstAllocator::with(pos);
        assert_eq!(OUT, [Some(1), None]);
    }

    #[test]
    fn drop_on_clear() {
        #[allow(dead_code)] // [ref:unnamed_const_dead_code]
        const fn array(allocator: &ConstAllocator) {
            let mut x = ComptimeVec::new_in(allocator.clone());

            // If the destructor is not called for these `ConstAllocator`s,
            // `ConstAllocator::with(array)` will panic
            x.push(allocator.clone());
            x.push(allocator.clone());
            x.push(allocator.clone());
        }
        const _: () = ConstAllocator::with(array);
    }

    #[quickcheck]
    fn vec_position(values: Vec<u8>, expected_index: usize) -> TestResult {
        let needle = if values.is_empty() {
            42
        } else {
            values[expected_index % values.len()]
        };

        let got = vec_position!(values, |i| *i == needle);
        let expected = values.iter().position(|i| *i == needle);

        assert_eq!(got, expected);

        TestResult::passed()
    }
}