1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//! The allocator
use core::{alloc::Layout, ptr, ptr::NonNull};

macro_rules! const_try_result {
    ($x:expr) => {
        match $x {
            Ok(x) => x,
            Err(x) => return Err(x),
        }
    };
}

/// Compile-time allocator.
///
/// This is implemented on top of [`core::intrinsics::const_allocate`][].
///
/// # Stability
///
/// This type is subject to [the kernel-side API stability guarantee][1].
///
/// [1]: crate#stability
pub struct ConstAllocator {
    // We very much want to put these in `core::cell::*`, but they aren't very
    // useful in `const fn`, unfortunately.
    /// The number of the following objects pertaining to `self`:
    ///
    ///  - Clones of `ConstAllocator` from which new allocations can be created.
    ///  - Live allocations created through `ConstAllocator as Allocator`.
    ///
    ref_count: *mut usize,
}

impl ConstAllocator {
    /// Call the specified closure, passing a reference to a `Self` constructed
    /// on the stack.
    ///
    /// Does not work at runtime.
    ///
    /// All clones of `Self` and all allocations must be destroyed before the
    /// closure returns. This is because leaking const-allocated
    /// (interior-)mutable references to runtime code is unsound. See
    /// <https://github.com/rust-lang/rust/pull/91884#discussion_r774659436>.
    ///
    /// # Examples
    ///
    /// ```rust
    /// #![feature(const_eval_limit)]
    /// #![feature(const_trait_impl)]
    /// #![feature(const_mut_refs)]
    /// #![feature(const_option)]
    /// #![const_eval_limit = "500000"]
    /// use core::{alloc::Layout, ptr::NonNull};
    /// use r3_core::utils::{ConstAllocator, Allocator};
    /// const _: () = ConstAllocator::with(doit);
    /// const fn doit(al: &ConstAllocator) {
    ///     // You can clone `*al`, but you must destroy the clone before this
    ///     // function returns
    ///     let al = al.clone();
    ///
    ///     unsafe {
    ///         let mut blocks = [None; 256];
    ///         let mut i = 0;
    ///         while i < blocks.len() {
    ///             // Allocate a memory block
    ///             let Ok(layout) = Layout::from_size_align(i * 64, 8) else { unreachable!() };
    ///             let Ok(alloc) = al.allocate(layout) else { unreachable!() };
    ///
    ///             // Write something
    ///             let alloc = alloc.cast::<u8>();
    ///             if i > 0 { *alloc.as_ptr() = i as u8; }
    ///
    ///             // Remember the allocation
    ///             blocks[i] = Some((alloc, layout));
    ///
    ///             i += 1;
    ///         }
    ///
    ///         i = 1;
    ///         while i < blocks.len() {
    ///             // Check the value inside the allocation
    ///             let (ptr, _) = blocks[i].unwrap();
    ///             assert!(*ptr.as_ptr() == i as u8);
    ///             i += 1;
    ///         }
    ///
    ///         // You must deallocate all allocations before this
    ///         // function returns
    ///         i = 0;
    ///         while i < blocks.len() {
    ///             let (ptr, layout) = blocks[i].unwrap();
    ///             al.deallocate(ptr, layout);
    ///             i += 1;
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// It's an error to leak allocations:
    ///
    /// ```rust,compile_fail,E0080
    /// # #![feature(const_trait_impl)]
    /// # use core::alloc::Layout;
    /// # use r3_core::utils::{ConstAllocator, Allocator};
    /// # const _: () = ConstAllocator::with(doit);
    /// const fn doit(al: &ConstAllocator) {
    ///     let Ok(layout) = Layout::from_size_align(64, 8) else { unreachable!() };
    ///     let _ = al.allocate(layout);
    /// }
    /// ```
    ///
    /// ```rust,compile_fail,E0080
    /// # #![feature(const_trait_impl)]
    /// # use r3_core::utils::{ConstAllocator, Allocator};
    /// # const _: () = ConstAllocator::with(doit);
    /// const fn doit(al: &ConstAllocator) {
    ///     core::mem::forget(al.clone());
    /// }
    /// ```
    #[inline]
    pub const fn with<F, R>(f: F) -> R
    where
        F: ~const FnOnce(&ConstAllocator) -> R,
    {
        Self::with_inner(f)
    }

    /// The variant of [`Self::with`] that lets you pass an additional parameter
    /// to the closure.
    ///
    /// This can be used to work around the lack of compiler support for const
    /// closures.
    #[inline]
    pub const fn with_parametric<P, F, R>(p: P, f: F) -> R
    where
        F: ~const FnOnce(P, &ConstAllocator) -> R,
    {
        Self::with_inner((p, f))
    }

    const fn with_inner<F: ~const FnOnceConstAllocator>(f: F) -> F::Output {
        struct RefCountGuard(usize);
        impl const Drop for RefCountGuard {
            fn drop(&mut self) {
                if self.0 != 0 {
                    panic!(
                        "there are outstanding allocations or \
                        allocator references"
                    );
                }
            }
        }

        let mut ref_count = RefCountGuard(1);
        let ref_count = &mut ref_count.0;

        let this = Self { ref_count };

        f.call(&this)
    }
}

/// The trait for types accepted by [`ConstAllocator::with_inner`].
#[const_trait]
trait FnOnceConstAllocator {
    type Output;
    fn call(self, allocator: &ConstAllocator) -> Self::Output;
}

/// This implementation's `call` method simply calls the `FnOnce` receiver.
impl<T: ~const FnOnce(&ConstAllocator) -> Output, Output> const FnOnceConstAllocator for T {
    type Output = Output;
    fn call(self, allocator: &ConstAllocator) -> Self::Output {
        self(allocator)
    }
}

/// This implementation's `call` method calls the `FnOnce` receiver with an
/// associated parameter value.
impl<P, T: ~const FnOnce(P, &ConstAllocator) -> Output, Output> const FnOnceConstAllocator
    for (P, T)
{
    type Output = Output;
    fn call(self, allocator: &ConstAllocator) -> Self::Output {
        (self.1)(self.0, allocator)
    }
}

impl const Clone for ConstAllocator {
    fn clone(&self) -> Self {
        unsafe { *self.ref_count += 1 };
        Self {
            ref_count: self.ref_count,
        }
    }
}

impl const Drop for ConstAllocator {
    fn drop(&mut self) {
        unsafe { *self.ref_count -= 1 };
    }
}

/// The `AllocError` error indicates an allocation failure
/// that may be due to resource exhaustion or to
/// something wrong when combining the given input arguments with this
/// allocator.
///
/// # Stability
///
/// This trait is subject to [the kernel-side API stability guarantee][1].
///
/// [1]: crate#stability
#[derive(Clone, Copy)]
pub struct AllocError;

/// `const fn`-compatible [`core::alloc::Allocator`].
///
/// # Safety
///
/// See [`core::alloc::Allocator`]'s documentation.
///
/// # Stability
///
/// This trait is subject to [the kernel-side API stability guarantee][1].
///
/// [1]: crate#stability
#[const_trait]
pub unsafe trait Allocator {
    /// Attempts to allocate a block of memory.
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>;

    /// Behaves like `allocate`, but also ensures that the returned memory is
    /// zero-initialized.
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let ptr = const_try_result!(self.allocate(layout));
        // SAFETY: `alloc` returns a valid memory block
        unsafe { ptr.as_ptr().cast::<u8>().write_bytes(0, ptr.len()) }
        Ok(ptr)
    }

    /// Deallocates the memory referenced by `ptr`.
    ///
    /// # Safety
    ///
    /// See [`core::alloc::Allocator::deallocate`]'s documentation.
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout);

    /// Attempts to extend the memory block.
    ///
    /// # Safety
    ///
    /// See [`core::alloc::Allocator::grow`]'s documentation.
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        let new_ptr = const_try_result!(self.allocate(new_layout));

        // SAFETY: because `new_layout.size()` must be greater than or equal to
        // `old_layout.size()`, both the old and new memory allocation are valid for reads and
        // writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet
        // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
        // safe. The safety contract for `dealloc` must be upheld by the caller.
        unsafe {
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_layout.size());
            self.deallocate(ptr, old_layout);
        }

        Ok(new_ptr)
    }

    /// Behaves like `grow`, but also ensures that the new contents are set to
    /// zero before being returned.
    ///
    /// # Safety
    ///
    /// See [`core::alloc::Allocator::grow_zeroed`]'s documentation.
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() >= old_layout.size(),
            "`new_layout.size()` must be greater than or equal to `old_layout.size()`"
        );

        let new_ptr = const_try_result!(self.allocate_zeroed(new_layout));

        // SAFETY: because `new_layout.size()` must be greater than or equal to
        // `old_layout.size()`, both the old and new memory allocation are valid for reads and
        // writes for `old_layout.size()` bytes. Also, because the old allocation wasn't yet
        // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
        // safe. The safety contract for `dealloc` must be upheld by the caller.
        unsafe {
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), old_layout.size());
            self.deallocate(ptr, old_layout);
        }

        Ok(new_ptr)
    }

    /// Attempts to shrink the memory block.
    ///
    /// # Safety
    ///
    /// See [`core::alloc::Allocator::shrink`]'s documentation.
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        debug_assert!(
            new_layout.size() <= old_layout.size(),
            "`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
        );

        let new_ptr = const_try_result!(self.allocate(new_layout));

        // SAFETY: because `new_layout.size()` must be lower than or equal to
        // `old_layout.size()`, both the old and new memory allocation are valid for reads and
        // writes for `new_layout.size()` bytes. Also, because the old allocation wasn't yet
        // deallocated, it cannot overlap `new_ptr`. Thus, the call to `copy_nonoverlapping` is
        // safe. The safety contract for `dealloc` must be upheld by the caller.
        unsafe {
            ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr().cast(), new_layout.size());
            self.deallocate(ptr, old_layout);
        }

        Ok(new_ptr)
    }

    /// Creates a “by reference” adapter for this instance of `Allocator`.
    fn by_ref(&self) -> &Self
    where
        Self: Sized,
    {
        self
    }
}

unsafe impl<A> const Allocator for &A
where
    A: ~const Allocator + ?Sized,
{
    #[inline]
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate(layout)
    }

    #[inline]
    fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        (**self).allocate_zeroed(layout)
    }

    #[inline]
    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        // SAFETY: the safety contract must be upheld by the caller
        unsafe { (**self).deallocate(ptr, layout) }
    }

    #[inline]
    unsafe fn grow(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        unsafe { (**self).grow(ptr, old_layout, new_layout) }
    }

    #[inline]
    unsafe fn grow_zeroed(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        unsafe { (**self).grow_zeroed(ptr, old_layout, new_layout) }
    }

    #[inline]
    unsafe fn shrink(
        &self,
        ptr: NonNull<u8>,
        old_layout: Layout,
        new_layout: Layout,
    ) -> Result<NonNull<[u8]>, AllocError> {
        unsafe { (**self).shrink(ptr, old_layout, new_layout) }
    }
}

unsafe impl const Allocator for ConstAllocator {
    fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let ptr = unsafe { core::intrinsics::const_allocate(layout.size(), layout.align()) };
        let Some(ptr) = NonNull::new(ptr) else { return Err(AllocError) };
        unsafe { *self.ref_count += 1 };
        Ok(NonNull::slice_from_raw_parts(ptr, layout.size()))
    }

    unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
        unsafe { core::intrinsics::const_deallocate(ptr.as_ptr(), layout.size(), layout.align()) };
        unsafe { *self.ref_count -= 1 };
    }
}