1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
//! Timers
use core::{fmt, hash};
use super::{
raw, raw_cfg, Cfg, SetTimerDelayError, SetTimerPeriodError, StartTimerError, StopTimerError,
};
use crate::{
closure::{Closure, IntoClosureConst},
time::Duration,
utils::{Init, PhantomInvariant},
};
// ----------------------------------------------------------------------------
define_object! {
/// Represents a single timer in a system.
///
#[doc = common_doc_owned_handle!()]
///
/// <div class="admonition-follows"></div>
///
/// > **Relation to Other Specifications:** A similar concept exists in almost
/// > every operating system.
///
/// [`RawTimerId`]: raw::KernelTimer::RawTimerId
///
/// <div class="toc-header"></div>
///
/// - [Timer States](#timer-states)
/// - [Timer Scheduling](#timer-scheduling)
/// - [Overdue Timers](#overdue-timers)
/// - [Start/Stop](#startstop)
/// - [Dynamic Period](#dynamic-period)
/// - [Infinite Delay and/or Period](#infinite-delay-andor-period)
/// - [Examples](#examples)
/// - [Periodic Timer](#periodic-timer)
/// - [One-Shot Timer](#one-shot-timer)
/// - [Methods](#implementations) <!-- this section is generated by rustdoc -->
///
/// # Timer States
///
/// A timer may be in one of the following states:
///
/// - **Dormant** — The timer is not running and can be [started].
///
/// - **Active** — The timer is running and can be [stopped].
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
/// .---------------. start .--------------.
/// | | -----------------------------> | |
/// | Dormant | | Active |
/// | | <----------------------------- | |
/// '---------------' stop '--------------'
/// ```
)]
///
/// </center>
///
/// [started]: TimerMethods::start
/// [stopped]: TimerMethods::stop
///
/// # Timer Scheduling
///
/// The scheduling of a timer is determined by two state variables:
///
/// - The [delay] is an optional non-negative [duration] value
/// (`Option<Duration>`) that specifies the minimum period of time before the
/// callback function gets called.
///
/// If the delay is `None`, it's treated as infinity and the function will
/// never execute.
///
/// While a timer is active, this value decreases at a steady rate. If the
/// system can't process a timer for an extended period of time, this value
/// might temporarily fall negative.
///
/// - The [period] is an optional non-negative duration value. On expiration,
/// the system adds this value to the timer's delay.
///
/// [delay]: TimerMethods::set_delay
/// [period]: TimerMethods::set_period
/// [duration]: crate::time::Duration
///
/// ## Overdue Timers
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
///
/// Higher-priority interrupt __________
/// or CPU Lock |__________|
///
/// _____ _____ _____ _____
/// Timer callback |_____| |_____|_____| |_____|
/// 1 2 3 4
///
/// Delay 7 6 5 4 3 2 1 4 3 2 1 0 -1 -2 1 0 3 2 1 4 3 2 1
/// ├──┬──┬──┬──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┤
/// ↑ initial delay 1 period 2 period 3 period 4 period
/// activated
///
/// ```
)]
///
/// </center>
///
/// When scheduling a next tick, the system takes the observed timer handling
/// latency into account and makes the new delay shorter than the period as
/// needed to ensure that the callback function is called in a steady rate. This
/// behavior is illustrated by the above figure. This is accomplished by adding
/// the specified period to the timer's absolute arrival time instead of
/// recalculating the arrival time based on the current system time. The delay
/// is a difference between the current system time and the arrival time.
///
/// Note that the system does not impose any limit on the extent of this
/// behavior. To put this simply, *if one second elapses, the system makes one
/// second worth of calls no matter what.*
/// If a periodic timer's callback function couldn't complete within the
/// timer's period, the timer latency would steadily increase until it reaches
/// the point where various internal assumptions get broken. While the system is
/// processing overdue calls, the timer interrupt handler might not return. Some
/// kernel timer drivers (most notably the Arm-M tickful SysTick driver) have
/// much lower tolerance for this.
/// To avoid this catastrophic situation, an application should take the
/// precautions shown below:
///
/// - Don't perform an operation that might take an unbounded time in a timer
/// callback function.
///
/// - Off-load time-consuming operations to a task, which is [activated] or
/// [unparked] by a timer callback function.
///
/// - Don't specify zero as period unless you know what you are doing.
///
/// - Keep your target platform's performance characteristics in your mind.
///
/// [activated]: crate::kernel::task::TaskMethods::activate
/// [unparked]: crate::kernel::task::TaskMethods::unpark
///
/// ## Start/Stop
///
/// When a timer is [stopped], the timer will not fire anymore and the delay
/// remains stationary at the captured value. If the captured value is negative,
/// it's rounded to zero. This means that if there are more than one outstanding
/// call at the moment of stopping, they will be dropped.
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
/// _____ _____ _____ _____
/// Timer callback |_____| |_____| |_____| |_____|
/// 1 2 3 4
///
/// ├──┬──┬──┬──┼──┤╴╴╴╴╴╴╴╴╴╴╴├──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┤
/// 1 2 ↑ ↑ 3 4
/// stop start
///
/// _____ _____ _____ _____ _____ _____ _____
/// Timer callback |_____|_____|_____|_____| |_____|_____|_____|
/// 1 2 3 4 5 6 7
///
/// ├──┼──┼──┼──┼──┼──┼─┤╴╴╴╴╴╴╴╴╴╴╴├──┼──┼──┼──┼──┼──┤
/// 1 2 3 4 x x x ↑ ↑5 6 7 8 9 10
/// stop start
///
/// ```
)]
///
/// </center>
///
/// Another way to stop a timer is to [set the delay or the period to `None`
/// (infinity)](#infinite-delay-andor-period).
///
/// [stopped]: TimerMethods::stop
///
/// ## Dynamic Period
///
/// The period can be changed anytime. The system reads it before calling a
/// timer callback function and adds it to the timer's current delay value.
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
/// _____ _____ _____ _____ _____
/// Timer callback |_____| |_____| |_____| |_____| |_____|
/// 1 2 3 4 5
///
/// Delay 4 3 2 1 4 3 2 1 3 2 1 3 2 1 3 2 1
/// ├──┬──┬──┬──┼──┬──┬──┬──┤
/// 1 2 ↑
/// period = 4 period ← 3 ├──┬──┬──┼──┬──┬──┼──┬──┬──┤
/// 3 4 5
///
/// _____ _____ _____ _____ _____ _____ _____ _____
/// Timer callback |_____|_____|_____|_____|_____|_____|_____| |_____|
/// 1 2 3 4 5 6 7 8
///
/// Delay 1 0 0 -1 -1 -2 -2 -3 0 -1 2 1 4 3 2 1 4
/// ├──┼──┼──┼──┼──┼──┼┤
/// 1 2 3 4 x x x↑
/// period = 1 ├──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┼──┤
/// 5 ↑ 6 7 8
/// period ← 4
///
/// ```
)]
///
/// </center>
///
/// It might be tricky to understand the outcome of changing the period when
/// there are overdue calls. It could be explained in this way: *If there are
/// one second worth of calls pending, there will still be one second worth of
/// calls pending after changing the period.*
///
/// ## Infinite Delay and/or Period
///
/// If [`delay` is set] to `None` (infinity), the timer will stop firing. Note
/// that the timer is still in the Active state, and the correct way to restart
/// this timer is to reset the delay to a finite value.
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
/// _____ _____ _____
/// Timer callback |_____| |_____| |_____|
/// 1 2 3
///
/// ├──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┼──┬──┬──┬──┤
/// 1 ↑ ↑ 2 3
/// delay ← None delay ← 3
///
/// ```
)]
///
/// </center>
///
/// If [`period` is set] to `None` instead, the timer will stop firing after the
/// next tick.
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
/// _____ _____ _____ _____
/// Timer callback |_____| |_____| |_____| |_____|
/// 1 2 3 4
///
/// ├──┬──┬──┬──┤ ├──┬──┬──┼──┬──┬──┬──┤
/// 1 ↑ ↑ 3 4
/// period ← None ├──┬──┬──┬──┬──┤
/// 2 ↑
/// period ← 4
/// delay ← 3
///
/// ```
)]
///
/// </center>
///
/// [`delay` is set]: TimerMethods::set_delay
/// [`period` is set]: TimerMethods::set_period
///
/// # Examples
///
/// ## Periodic Timer
///
/// ```rust
/// # #![feature(const_trait_impl)]
/// # #![feature(const_mut_refs)]
/// use r3_core::{kernel::{Cfg, StaticTimer, traits}, time::Duration};
///
/// const fn configure<C>(b: &mut Cfg<C>) -> StaticTimer<C::System>
/// where
/// C: ~const traits::CfgTimer,
/// {
/// StaticTimer::define()
/// .delay(Duration::from_millis(70))
/// .period(Duration::from_millis(40))
/// .active(true)
/// .start(|| dbg!())
/// .finish(b)
/// }
/// ```
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
/// _____ _____ _____ _____
/// Timer callback |_____| |_____| |_____| |_____|
/// 1 2 3 4
///
/// ├──┬──┬──┬──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┼──┬──┬──┬──┤
/// ↑ 70ms 1 40ms 2 40ms 3 40ms 4 40ms
/// system boot
///
/// ```
)]
///
/// </center>
///
/// ## One-Shot Timer
///
/// ```rust
/// # #![feature(const_trait_impl)]
/// # #![feature(const_mut_refs)]
/// use r3_core::{kernel::{Cfg, StaticTimer, traits, prelude::*}, time::Duration};
///
/// const fn configure<C>(b: &mut Cfg<C>) -> StaticTimer<C::System>
/// where
/// C: ~const traits::CfgTimer,
/// {
/// StaticTimer::define()
/// .active(true)
/// .start(|| dbg!())
/// .finish(b)
/// }
/// ```
///
/// [Reset the delay] to schedule a call.
///
/// ```rust
/// use r3_core::{kernel::{TimerRef, traits, prelude::*}, time::Duration};
///
/// fn sched<System: traits::KernelTimer>(timer: TimerRef<'_, System>) {
/// timer.set_delay(Some(Duration::from_millis(40))).unwrap();
/// }
/// ```
///
/// <center>
///
#[doc = svgbobdoc::transform!(
/// ```svgbob
/// _____ _____
/// Timer callback |_____| |_____|
/// 1 2
///
/// ├──┬──┬──┬──┬──┬──┼──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┼──┬──┬──┬──┤
/// ↑ 40ms 1 ↑ ↑ 40ms 2
/// sched sched sched
///
/// ```
)]
///
/// </center>
///
/// [Reset the delay]: TimerMethods::set_delay
///
#[doc = include_str!("../common.md")]
pub struct Timer<System: _>(System::RawTimerId);
/// Represents a single borrowed timer in a system.
#[doc = include_str!("../common.md")]
pub struct TimerRef<System: raw::KernelTimer>(_);
pub type StaticTimer<System>;
pub trait TimerHandle {}
pub trait TimerMethods {}
}
impl<System: raw::KernelTimer> StaticTimer<System> {
/// Construct a `TimerDefiner` to define a timer in [a
/// configuration function](crate#static-configuration).
pub const fn define() -> TimerDefiner<System> {
TimerDefiner::new()
}
}
/// The supported operations on [`TimerHandle`].
#[doc = include_str!("../common.md")]
pub trait TimerMethods: TimerHandle {
/// Start the timer (transition it into the Active state).
///
/// This method has no effect if the timer is already in the Active state.
#[inline]
fn start(&self) -> Result<(), StartTimerError> {
// Safety: `Timer` represents a permission to access the
// referenced object.
unsafe { <Self::System as raw::KernelTimer>::raw_timer_start(self.id()) }
}
/// Stop the timer (transition it into the Dormant state).
///
/// This method has no effect if the timer is already in the Dormant state.
#[inline]
fn stop(&self) -> Result<(), StopTimerError> {
// Safety: `Timer` represents a permission to access the
// referenced object.
unsafe { <Self::System as raw::KernelTimer>::raw_timer_stop(self.id()) }
}
/// Set the duration before the next tick.
///
/// If the timer is currently in the Dormant state, this method specifies
/// the duration between the next activation and the first tick
/// following the activation.
///
/// `None` means infinity (the timer will never fire).
#[inline]
fn set_delay(&self, delay: Option<Duration>) -> Result<(), SetTimerDelayError> {
// Safety: `Timer` represents a permission to access the
// referenced object.
unsafe { <Self::System as raw::KernelTimer>::raw_timer_set_delay(self.id(), delay) }
}
/// Set the timer period, which is a quantity to be added to the timer's
/// absolute arrival time on every tick.
///
/// `None` means infinity.
#[inline]
fn set_period(&self, period: Option<Duration>) -> Result<(), SetTimerPeriodError> {
// Safety: `Timer` represents a permission to access the
// referenced object.
unsafe { <Self::System as raw::KernelTimer>::raw_timer_set_period(self.id(), period) }
}
}
impl<T: TimerHandle> TimerMethods for T {}
// ----------------------------------------------------------------------------
/// The definer (static builder) for [`TimerRef`].
#[must_use = "must call `finish()` to complete registration"]
pub struct TimerDefiner<System> {
_phantom: PhantomInvariant<System>,
start: Option<Closure>,
delay: Option<Duration>,
period: Option<Duration>,
active: bool,
}
impl<System: raw::KernelTimer> TimerDefiner<System> {
const fn new() -> Self {
Self {
_phantom: Init::INIT,
start: None,
delay: None,
period: None,
active: false,
}
}
/// \[**Required**\] Specify the timer's entry point. It will be called
/// in an interrupt context.
pub const fn start<C: ~const IntoClosureConst>(self, start: C) -> Self {
Self {
start: Some(start.into_closure_const()),
..self
}
}
/// Specify whether the timer should be started at system startup.
/// Defaults to `false` (don't activate).
pub const fn active(self, active: bool) -> Self {
Self { active, ..self }
}
/// Specify the initial [delay].
/// Defaults to `None` (infinity; the timer will never fire).
///
/// [delay]: TimerMethods::set_delay
pub const fn delay(self, delay: Duration) -> Self {
Self {
delay: Some(delay),
..self
}
}
/// Specify the initial [period].
/// Defaults to `None` (infinity; the timer will stop firing after the next
/// tick).
///
/// [period]: TimerMethods::set_period
pub const fn period(self, period: Duration) -> Self {
Self {
period: Some(period),
..self
}
}
/// Complete the definition of a mutex, returning a reference to the
/// mutex.
pub const fn finish<C: ~const raw_cfg::CfgTimer<System = System>>(
self,
c: &mut Cfg<C>,
) -> StaticTimer<System> {
let id = c.raw().timer_define(
raw_cfg::TimerDescriptor {
phantom: Init::INIT,
start: self
.start
.expect("`start` (timer callback function) is not specified"),
delay: self.delay,
period: self.period,
active: self.active,
},
(),
);
unsafe { TimerRef::from_id(id) }
}
}