1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
//! The mechanism to determine the initialization order of bindings and check
//! the borrowing rules. It provides a weird interface to allow testing by
//! runtime code.
//!
//! Some preconditions:
//!
//! - `[tag:bind_conflicting_take]` `bind_users(bind_i)` may have one `(_, Take
//!   | TakeMut)` or any number of `(_, TakeRef)` but not both.
//!
//! - `[tag:bind_conflicting_borrows]` For any `(bind_i, usage)`,
//!   `bind_users(bind_i)` may have one `(usage, BorrowMut)` or any number of
//!   `(usage, Borrow)` but not both.
//!
//! The initialization order is determined by topological sorting
//! `[tag:bind_topo]`. The vertices are defined as follows:
//!
//! - `[tag:bind_topo_vert_bind]` Define a vertex `v(Bind(bind_i))` for each
//!   binding. This represents the initialization of the binding.
//!
//! - `[tag:bind_topo_vert_exe]` Define a vertex `v(Executable)` encompassing
//!   all exectable objects.
//!
//! - `[tag:bind_topo_vert_disown]` Define another vertex `vd(bind_i)` for each
//!   binding, if it's borrowed indefinitely (i.e., there's `(_, Take | TakeRef
//!   | TakeMut)` in `bind_users(bind_i)`).
//!
//! The edges are defined as follows:
//!
//! - For each element `u = (usage, borrow_type)` in `bind_users(bind_i0)`:
//!
//!     - `[tag:bind_topo_edge_borrow]` If `u` is `(usage, Borrow | BorrowMut)`,
//!       define an edge `(v(Bind(bind_i0)), usage)`. This means the value must
//!       be borrowed after it's created.
//!
//!     - `[tag:bind_topo_edge_take]` If `u` is `(usage, Take | TakeRef |
//!       TakeMut)`, define an edge `(vd(bind_i0), usage)`. This makes
//!       `vd(bind_i)` mark the starting point of indefinite borrow(s).
//!
//!     - `[tag:bind_topo_edge_borrow_any_vs_take_mut]` If an element `(_, Take
//!       | TakeMut)` is present in `bind_users(bind_i0)`, and `u` is
//!       `(_, Borrow | BorrowMut)`, define an edge `(usage, vd(bind_i0))`.
//!
//!     - `[tag:bind_topo_edge_borrow_mut_vs_take_ref]` If an element
//!       `(_, TakeRef)` is present in `bind_users(bind_i0)`, and `u` is
//!       `(_, BorrowMut)`, define an edge `(usage, vd(bind_i0))`.
//!
//! - `[tag:bind_topo_edge_disown]` Define an edge `(v(Bind(bind_i)),
//!   vd(bind_i))` if `vd(bind_i)` exists in the graph.
//!
// FIXME: We might be able to improve the interface when `ComptimeVec` is not
// restricted to "comptime" anymore
use core::{
    marker::Destruct,
    ops::{Index, IndexMut},
};

use super::{BindBorrowType, BindUsage};
use crate::utils::{
    binary_heap::{BinaryHeap, BinaryHeapCtx, VecLike},
    refcell::RefCell,
    Init,
};

#[const_trait]
pub(super) trait SorterCallback {
    /// Push a binding to the end of the initialization order.
    fn push_bind_order(&mut self, bind_i: usize);

    /// Report an error.
    ///
    /// If any errors are reported, the binding definition is invalid, and no
    /// code using the defined bindings shall be allowed to execute at runtime.
    fn report_error(&mut self, e: SorterError<'_>);

    fn num_binds(&self) -> usize;

    /// Get the consumers of the specified binding.
    fn bind_users(&self, bind_i: usize) -> &[(BindUsage, BindBorrowType)];
}

pub(super) enum SorterError<'a> {
    /// There exists no valid initialization order because of a dependency
    /// cycle.
    BindCycle { bind_is: &'a [usize] },
    /// The binding is borrowed indefinitely or taken in a way that
    /// violates the borrow rules.
    ConflictingIndefiniteBorrow { bind_i: usize },
}

/// A temporary storage to store information about a binding.
#[derive(Clone, Copy)]
pub(super) struct SorterBindInfo1 {
    /// `None`: Not borrowed indefinitely, `Some(false)`: Has a shared
    /// indefinite borrow, `Some(true)` Has an exclusive indefinite borrow
    borrowed_indefinitely: Option<bool>,
    /// An index into `[SorterUseInfo]`. Forms a singly-linked list containing
    /// all bindings that this binding needs to consume for initialization.
    first_use_i: Option<usize>,
}

impl Init for SorterBindInfo1 {
    const INIT: Self = Self {
        borrowed_indefinitely: None,
        first_use_i: None,
    };
}

// This could be merged into one `SorterBindInfo` if `tokenlock` could
// be used in `const fn` [ref:tokenlock_const]
/// A temporary storage to store information about a binding.
#[derive(Clone, Copy)]
pub(super) struct SorterBindInfo2 {
    /// The `TopologicalSortVertexInfo`s for `v(Bind(bind_i))`
    /// ([ref:bind_topo_vert_bind]) and `vd(bind_i)`
    /// ([ref:bind_topo_vert_disown]), respectively.
    temp_sort: [TopologicalSortVertexInfo; 2],
}

impl Init for SorterBindInfo2 {
    const INIT: Self = Self {
        temp_sort: Init::INIT,
    };
}

#[derive(Clone, Copy)]
pub(super) struct SorterUseInfo {
    /// A binding this binding depends on for initialization.
    bind_i: usize,
    borrow_type: BindBorrowType,
    /// The next index of [`SorterUseInfo`].
    next_use_i: Option<usize>,
}

/// Used by [`sort_bindings`][]
#[derive(Clone, Copy)]
pub(super) enum Vertex {
    /// [ref:bind_topo_vert_bind]
    BindInit(usize),
    /// [ref:bind_topo_vert_disown]
    BindDisown(usize),
    /// [ref:bind_topo_vert_exe]
    Executable,
}

pub(super) const fn sort_bindings<Callback, SorterUseInfoList, VertexList>(
    cb: &mut Callback,
    temp_binds1: &mut [SorterBindInfo1],
    temp_binds2: &mut [SorterBindInfo2],
    temp_uses: &mut SorterUseInfoList,
    temp_vertices: &mut VertexList,
) where
    Callback: ~const SorterCallback,
    SorterUseInfoList: ~const VecLike<Element = SorterUseInfo>,
    VertexList: ~const VecLike<Element = Vertex>,
{
    // Preconditions
    let num_binds = cb.num_binds();
    assert!(temp_binds1.len() >= num_binds);
    assert!(temp_binds2.len() >= num_binds);
    assert!(temp_uses.is_empty());
    assert!(temp_vertices.is_empty());

    for bind_i in 0..num_binds {
        let bind_users = cb.bind_users(bind_i);

        let mut num_indefinite_shared = 0;
        let mut num_indefinite_exclusive = 0;

        // `[T]::iter` is unusable in `const fn` [ref:const_slice_iter]
        // FIXME: `needless_range_loop` false positive
        // <https://github.com/rust-lang/rust-clippy/issues/10524>
        #[expect(clippy::needless_range_loop)]
        for i in 0..bind_users.len() {
            // Reject impossible combinations that should be caught earlier
            match bind_users[i] {
                (BindUsage::Bind(_), BindBorrowType::Borrow)
                | (BindUsage::Bind(_), BindBorrowType::BorrowMut)
                | (BindUsage::Bind(_), BindBorrowType::Take)
                | (BindUsage::Bind(_), BindBorrowType::TakeRef)
                | (BindUsage::Bind(_), BindBorrowType::TakeMut)
                | (BindUsage::Executable, BindBorrowType::Take)
                | (BindUsage::Executable, BindBorrowType::TakeRef)
                | (BindUsage::Executable, BindBorrowType::TakeMut) => {}
                // [ref:borrow_is_indefinite_for_executable]
                (BindUsage::Executable, BindBorrowType::Borrow)
                | (BindUsage::Executable, BindBorrowType::BorrowMut) => {
                    unreachable!()
                }
            }

            // Count indefinite borrows
            match bind_users[i].1 {
                BindBorrowType::Borrow | BindBorrowType::BorrowMut => {}
                BindBorrowType::TakeRef => {
                    num_indefinite_shared += 1;
                }
                BindBorrowType::Take | BindBorrowType::TakeMut => {
                    num_indefinite_exclusive += 1;
                }
            }

            // Collect dependencies in the reverse direction
            if let (BindUsage::Bind(user_bind_i), borrow_type) = bind_users[i] {
                let use_i = temp_uses.len();
                let other_bind_first_use_i = &mut temp_binds1[user_bind_i].first_use_i;
                temp_uses.push(SorterUseInfo {
                    bind_i,
                    borrow_type,
                    next_use_i: *other_bind_first_use_i,
                });
                *other_bind_first_use_i = Some(use_i);
            }
        }

        temp_binds1[bind_i].borrowed_indefinitely =
            match (num_indefinite_shared, num_indefinite_exclusive) {
                (0, 0) => None,
                (_, 0) => Some(false),
                (0, 1) => Some(true),
                _ => {
                    // [ref:bind_conflicting_take]
                    cb.report_error(SorterError::ConflictingIndefiniteBorrow { bind_i });
                    Some(false)
                }
            };
    }

    // Helper types needed for topological sorting. `Vertex` is defined outside
    // so that the caller can provide a storage for `Vertex`.
    impl Vertex {
        const fn discriminant(&self) -> usize {
            match self {
                Vertex::BindInit(_) => 0,
                Vertex::BindDisown(_) => 1,
                Vertex::Executable => 2,
            }
        }

        const fn lt(&self, rhs: &Vertex) -> bool {
            match (*self, *rhs) {
                (Vertex::BindInit(lhs_bind_i), Vertex::BindInit(rhs_bind_i)) => {
                    lhs_bind_i < rhs_bind_i
                }
                (Vertex::BindDisown(lhs_bind_i), Vertex::BindDisown(rhs_bind_i)) => {
                    lhs_bind_i < rhs_bind_i
                }
                (Vertex::Executable, Vertex::Executable) => false,
                _ => self.discriminant() < rhs.discriminant(),
            }
        }
    }

    /// Represents a binding initialization graph.
    struct Graph<'a, Callback> {
        temp_binds1: &'a [SorterBindInfo1],
        cb: &'a RefCell<&'a mut Callback>,
        temp_uses: &'a [SorterUseInfo],
    }

    impl<'a, Callback> const GraphAccess<Vertex> for Graph<'a, Callback>
    where
        Callback: ~const SorterCallback,
    {
        type VertexIter<'b> = VertexIter<'a>
        where
            Self: 'b;

        fn vertices(&self) -> Self::VertexIter<'_> {
            VertexIter {
                temp_binds1: self.temp_binds1,
                st: VertexIterState::BindInit(0),
            }
        }

        type SuccessorIter<'b> = SuccessorIter<'a, Callback>
        where
            Self: 'b;

        fn successors(&self, v: &Vertex) -> Self::SuccessorIter<'_> {
            let st = match *v {
                Vertex::Executable => SuccessorIterState::End, // ∅
                Vertex::BindInit(bind_i) => SuccessorIterState::BindInitToBorrowingUser(bind_i, 0),
                Vertex::BindDisown(bind_i) => {
                    if self.temp_binds1[bind_i].borrowed_indefinitely.is_some() {
                        SuccessorIterState::BindDisownToTakingUser(bind_i, 0)
                    } else {
                        SuccessorIterState::End // ∅
                    }
                }
            };

            SuccessorIter {
                temp_binds1: self.temp_binds1,
                cb: self.cb,
                temp_uses: self.temp_uses,
                st,
            }
        }
    }

    /// An iterator over all vertices in the binding initialization graph
    /// [ref:bind_topo].
    struct VertexIter<'a> {
        temp_binds1: &'a [SorterBindInfo1],
        st: VertexIterState,
    }

    enum VertexIterState {
        BindInit(usize),
        BindDisown(usize),
        Executable,
        End,
    }

    impl const Iterator for VertexIter<'_> {
        type Item = Vertex;

        fn next(&mut self) -> Option<Self::Item> {
            loop {
                match self.st {
                    VertexIterState::BindInit(bind_i) if bind_i >= self.temp_binds1.len() => {
                        self.st = VertexIterState::Executable;
                    }
                    VertexIterState::BindInit(bind_i) => {
                        self.st = VertexIterState::BindDisown(bind_i);
                        return Some(Vertex::BindInit(bind_i));
                    }
                    VertexIterState::BindDisown(bind_i) => {
                        self.st = VertexIterState::BindInit(bind_i + 1);
                        // This vertex is included conditionally
                        // ([ref:bind_topo_vert_disown])
                        if self.temp_binds1[bind_i].borrowed_indefinitely.is_some() {
                            return Some(Vertex::BindDisown(bind_i));
                        }
                    }
                    VertexIterState::Executable => {
                        self.st = VertexIterState::End;
                        return Some(Vertex::Executable);
                    }
                    VertexIterState::End => return None,
                }
            }
        }
    }

    /// An iterator over the successors of a specific vertex in the binding
    /// initialization graph [ref:bind_topo]. (I.e., `{d | (s, d) ∈ E}` for a
    /// given `s`)
    struct SuccessorIter<'a, Callback> {
        temp_binds1: &'a [SorterBindInfo1],
        cb: &'a RefCell<&'a mut Callback>,
        temp_uses: &'a [SorterUseInfo],
        st: SuccessorIterState,
    }

    enum SuccessorIterState {
        BindInitToBorrowingUser(usize, usize),
        BindInitToDisown(usize),
        BindInitToDependencyDisown(usize, Option<usize>),

        BindDisownToTakingUser(usize, usize),

        End,
    }

    impl<Callback> const Iterator for SuccessorIter<'_, Callback>
    where
        Callback: ~const SorterCallback,
    {
        type Item = Vertex;

        fn next(&mut self) -> Option<Self::Item> {
            loop {
                match self.st {
                    // [ref:bind_topo_edge_borrow] `(v(Bind(bind_i)), usage)`
                    SuccessorIterState::BindInitToBorrowingUser(bind_i, bind_user_i) => {
                        let cb = self.cb.borrow();
                        let bind_users = cb.bind_users(bind_i);
                        if let Some(bind_user) = bind_users.get(bind_user_i) {
                            self.st = SuccessorIterState::BindInitToBorrowingUser(
                                bind_i,
                                bind_user_i + 1,
                            );
                            if matches!(
                                bind_user.1,
                                BindBorrowType::Borrow | BindBorrowType::BorrowMut
                            ) {
                                return Some(match bind_user.0 {
                                    BindUsage::Executable => Vertex::Executable,
                                    BindUsage::Bind(user_bind_i) => Vertex::BindInit(user_bind_i),
                                });
                            }
                        } else {
                            self.st = SuccessorIterState::BindInitToDisown(bind_i);
                        }
                    }
                    // [ref:bind_topo_edge_disown] `(v(Bind(bind_i)), vd(bind_i))`
                    SuccessorIterState::BindInitToDisown(bind_i) => {
                        self.st = SuccessorIterState::BindInitToDependencyDisown(bind_i, None);
                        if self.temp_binds1[bind_i].borrowed_indefinitely.is_some() {
                            return Some(Vertex::BindDisown(bind_i));
                        }
                    }
                    // [ref:bind_topo_edge_borrow_any_vs_take_mut] `(v(Bind(bind_i)), vd(usage.bind_i))`
                    // [ref:bind_topo_edge_borrow_mut_vs_take_ref] `(v(Bind(bind_i)), vd(usage.bind_i))`
                    SuccessorIterState::BindInitToDependencyDisown(bind_i, Some(use_i)) => {
                        let usage = &self.temp_uses[use_i];
                        self.st = SuccessorIterState::BindInitToDependencyDisown(
                            bind_i,
                            usage.next_use_i,
                        );
                        match (
                            usage.borrow_type,
                            self.temp_binds1[usage.bind_i].borrowed_indefinitely,
                        ) {
                            // [ref:bind_topo_edge_borrow_any_vs_take_mut]
                            | (BindBorrowType::Borrow | BindBorrowType::BorrowMut, Some(true))
                            // [ref:bind_topo_edge_borrow_mut_vs_take_ref]
                            | (BindBorrowType::BorrowMut, Some(false))
                            => {
                                return Some(Vertex::BindDisown(usage.bind_i));
                            }
                            _ => {}
                        }
                    }
                    SuccessorIterState::BindInitToDependencyDisown(_, None) => {
                        self.st = SuccessorIterState::End;
                    }

                    // [ref:bind_topo_edge_take] `(vd(bind_i), usage)`
                    SuccessorIterState::BindDisownToTakingUser(bind_i, bind_user_i) => {
                        let cb = self.cb.borrow();
                        let bind_users = cb.bind_users(bind_i);
                        if let Some(bind_user) = bind_users.get(bind_user_i) {
                            self.st =
                                SuccessorIterState::BindDisownToTakingUser(bind_i, bind_user_i + 1);
                            if matches!(
                                bind_user.1,
                                BindBorrowType::Take
                                    | BindBorrowType::TakeRef
                                    | BindBorrowType::TakeMut
                            ) {
                                return Some(match bind_user.0 {
                                    BindUsage::Executable => Vertex::Executable,
                                    BindUsage::Bind(user_bind_i) => Vertex::BindInit(user_bind_i),
                                });
                            }
                        } else {
                            self.st = SuccessorIterState::End;
                        }
                    }

                    SuccessorIterState::End => return None,
                }
            }
        }
    }

    struct MyTopologicalSortOutputSink<'a, Callback> {
        cb: &'a RefCell<&'a mut Callback>,
    }

    impl<Callback> const TopologicalSortOutputSink<Vertex> for MyTopologicalSortOutputSink<'_, Callback>
    where
        Callback: ~const SorterCallback,
    {
        fn push(&mut self, v: Vertex) {
            if let Vertex::BindInit(bind_i) = v {
                self.cb.borrow_mut().push_bind_order(bind_i)
            }
        }
    }

    struct MyVertexInfoMap<'a> {
        executable_info: TopologicalSortVertexInfo,
        temp_binds2: &'a mut [SorterBindInfo2],
    }

    impl<'a> const Index<&'a Vertex> for MyVertexInfoMap<'_> {
        type Output = TopologicalSortVertexInfo;

        fn index(&self, index: &'a Vertex) -> &Self::Output {
            match *index {
                Vertex::Executable => &self.executable_info,
                Vertex::BindInit(bind_i) => &self.temp_binds2[bind_i].temp_sort[0],
                Vertex::BindDisown(bind_i) => &self.temp_binds2[bind_i].temp_sort[1],
            }
        }
    }

    impl<'a> const IndexMut<&'a Vertex> for MyVertexInfoMap<'_> {
        fn index_mut(&mut self, index: &'a Vertex) -> &mut Self::Output {
            match *index {
                Vertex::Executable => &mut self.executable_info,
                Vertex::BindInit(bind_i) => &mut self.temp_binds2[bind_i].temp_sort[0],
                Vertex::BindDisown(bind_i) => &mut self.temp_binds2[bind_i].temp_sort[1],
            }
        }
    }

    // Perform topological sorting
    let cb = RefCell::new(cb);
    if topological_sort(
        &Graph {
            temp_binds1,
            cb: &cb,
            temp_uses,
        },
        &mut Vertex::lt,
        &mut MyTopologicalSortOutputSink { cb: &cb },
        temp_vertices,
        &mut MyVertexInfoMap {
            executable_info: Init::INIT,
            temp_binds2,
        },
    ) {
        // Success! The result has been returned via
        // `MyTopologicalSortOutputSink`.
        return;
    }

    // TODO: Report cycles
    cb.borrow_mut()
        .report_error(SorterError::BindCycle { bind_is: &[] });
} // fn sort_bindings

// Helper traits
// --------------------------------------------------------------------------

#[const_trait]
trait GraphAccess<VertexRef> {
    type VertexIter<'a>: ~const Iterator<Item = VertexRef> + ~const Destruct + 'a
    where
        Self: 'a;
    fn vertices(&self) -> Self::VertexIter<'_>;

    type SuccessorIter<'a>: ~const Iterator<Item = VertexRef> + ~const Destruct + 'a
    where
        Self: 'a;
    fn successors(&self, v: &VertexRef) -> Self::SuccessorIter<'_>;
}

// Topological sorting
// --------------------------------------------------------------------------

#[derive(Clone, Copy)]
struct TopologicalSortVertexInfo {
    num_predecessors: usize,
}

impl Init for TopologicalSortVertexInfo {
    const INIT: Self = Self {
        num_predecessors: 0,
    };
}

#[const_trait]
trait TopologicalSortOutputSink<VertexRef> {
    fn push(&mut self, v: VertexRef);
}

/// Perform topological sorting using Kahn's algorithm¹.
///
/// When faced with ambiguous choices, this function uses `vertex_ord_lt` to
/// give some vertices preference over others. If the answer in which all
/// vertices are sorted in the ascending order according to `vertex_ord_lt` is a
/// valid topological ordering, this function will output that answer.
///
/// Returns `true` if a valid topological ordering exists and has been placed
/// in `out_vertices`.
///
/// ¹ Kahn, Arthur B. (1962), "Topological sorting of large networks",
/// *Communications of the ACM*, **5** (11): 558–562, doi:10.1145/368996.369025
const fn topological_sort<
    Graph,
    VertexRef,
    VertexRefLessThan,
    ReadyVertexQueue,
    VertexInfoMap,
    OutputSink,
>(
    graph: &Graph,
    vertex_ord_lt: &mut VertexRefLessThan,
    out_vertices: &mut OutputSink,
    temp_ready_vertex_queue: &mut ReadyVertexQueue,
    temp_vertex_info: &mut VertexInfoMap,
) -> bool
where
    Graph: ~const GraphAccess<VertexRef>,
    VertexRef: Copy + ~const Destruct,
    VertexRefLessThan: ~const FnMut(&VertexRef, &VertexRef) -> bool,
    ReadyVertexQueue: ~const VecLike<Element = VertexRef>,
    for<'index> VertexInfoMap: ~const Index<&'index VertexRef, Output = TopologicalSortVertexInfo>
        + ~const IndexMut<&'index VertexRef>,
    OutputSink: ~const TopologicalSortOutputSink<VertexRef>,
{
    // Preconditions
    assert!(temp_ready_vertex_queue.is_empty());

    struct ReadyVertexQueueBinaryHeapCtx<'a, VertexRefLessThan> {
        vertex_ord_lt: &'a mut VertexRefLessThan,
    }

    impl<VertexRefLessThan, VertexRef> const BinaryHeapCtx<VertexRef>
        for ReadyVertexQueueBinaryHeapCtx<'_, VertexRefLessThan>
    where
        VertexRefLessThan: ~const FnMut(&VertexRef, &VertexRef) -> bool,
    {
        fn lt(&mut self, x: &VertexRef, y: &VertexRef) -> bool {
            (self.vertex_ord_lt)(x, y)
        }
    }

    // Calculate `TopologicalSortVertexInfo::num_predecessors`
    let mut num_vertices_remaining = 0;
    for v in graph.vertices() {
        temp_vertex_info[&v] = TopologicalSortVertexInfo {
            num_predecessors: 0,
        };
        num_vertices_remaining += 1;
    }
    for v in graph.vertices() {
        for successor in graph.successors(&v) {
            temp_vertex_info[&successor].num_predecessors += 1;
        }
    }

    // Push predecessor-less vertices to `temp_ready_vertex_queue`
    for v in graph.vertices() {
        if temp_vertex_info[&v].num_predecessors == 0 {
            temp_ready_vertex_queue.heap_push(v, ReadyVertexQueueBinaryHeapCtx { vertex_ord_lt });
        }
    }

    while let Some(v) =
        temp_ready_vertex_queue.heap_pop(ReadyVertexQueueBinaryHeapCtx { vertex_ord_lt })
    {
        // Remove `v` from the graph, and push the now-predecessor-less
        // vertices to `temp_ready_vertex_queue`
        for successor in graph.successors(&v) {
            temp_vertex_info[&successor].num_predecessors -= 1;
            if temp_vertex_info[&successor].num_predecessors == 0 {
                temp_ready_vertex_queue
                    .heap_push(successor, ReadyVertexQueueBinaryHeapCtx { vertex_ord_lt });
            }
        }

        // Append `v` to the output list
        out_vertices.push(v);
        num_vertices_remaining -= 1;
    }

    // Success?
    num_vertices_remaining == 0
}